ترغب بنشر مسار تعليمي؟ اضغط هنا

Mathematical model for pest-insect control using mating disruption and trapping

268   0   0.0 ( 0 )
 نشر من قبل Yves Dumont YD
 تاريخ النشر 2016
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Controlling pest insects is a challenge of main importance to preserve crop production. In the context of Integrated Pest Management (IPM) programs, we develop a generic model to study the impact of mating disruption control using an artificial female pheromone to confuse males and adversely affect their mating opportunities. Consequently the reproduction rate is diminished leading to a decline in the population size. For more efficient control, trapping is used to capture the males attracted to the artificial pheromone. The model, derived from biological and ecological assumptions, is governed by a system of ODEs. A theoretical analysis of the model without control is first carried out to establish the properties of the endemic equilibrium. Then, control is added and the theoretical analysis of the model enables to identify threshold values of pheromone which are practically interesting for field applications. In particular, we show that there is a threshold above which the global asymptotic stability of the trivial equilibrium is ensured, i.e. the population goes to extinction. Finally we illustrate the theoretical results via numerical experiments.

قيم البحث

اقرأ أيضاً

Vector/Pest control is essential to reduce the risk of vector-borne diseases or losses in crop fields. Among biological control tools, the sterile insect technique (SIT), is the most promising one. SIT control generally consists of massive releases o f sterile insects in the targeted area in order to reach elimination or to lower the pest population under a certain threshold. The models presented here are minimalistic with respect to the number of parameters and variables. The first model deals with the dynamics of the vector population while the second model, the SIT model, tackles the interaction between treated males and wild female vectors. For the vector population model, the elimination equilibrium $mathbb{0}$ is globally asymptotically stable when the basic offspring number, $mathcal{R}$, is lower or equal to one, whereas $mathbb{0}$ becomes unstable and one stable positive equilibrium exists, with well-determined basins of attraction, when $mathcal{R}>1$. For the SIT model, we obtain a threshold number of treated male vectors above which the control of wild female vectors is effective: the massive release control. When the amount of treated male vectors is lower than the aforementioned threshold number, the SIT model experiences a bistable situation involving the elimination equilibrium and a positive equilibrium. However, practically, massive releases of sterile males are only possible for a short period of time. That is why, using the bistability property, we develop a new strategy to maintain the wild population under a certain threshold, for a permanent and sustainable low level of SIT control. We illustrate our theoretical results with numerical simulations, in the case of SIT mosquito control.
In this paper, we propose a sex-structured entomological model that serves as a basis for design of control strategies relying on releases of sterile male mosquitoes (Aedes spp) and aiming at elimination of the wild vector population in some target l ocality. We consider different types of releases (constant and periodic impulsive), providing necessary conditions to reach elimination. However, the main part of the paper is focused on the study of the periodic impulsive control in different situations. When the size of wild mosquito population cannot be assessed in real time, we propose the so-called open-loop control strategy that relies on periodic impulsive releases of sterile males with constant release size. Under this control mode, global convergence towards the mosquito-free equilibrium is proved on the grounds of sufficient condition that relates the size and frequency of releases. If periodic assessments (either synchronized with releases or more sparse) of the wild population size are available in real time, we propose the so-called closed-loop control strategy, which is adjustable in accordance with reliable estimations of the wild population sizes. Under this control mode, global convergence to the mosquito-free equilibrium is proved on the grounds of another sufficient condition that relates not only the size and frequency of periodic releases but also the frequency of sparse measurements taken on wild populations. Finally, we propose a mixed control strategy that combines open-loop and closed-loop strategies. This control mode renders the best result, in terms of overall time needed to reach elimination and the number of releases to be effectively carried out during the whole release campaign, while requiring for a reasonable amount of released sterile insects.
We propose a qualitative analysis of a recent fractional-order COVID-19 model. We start by showing that the model is mathematically and biologically well posed. Then, we give a proof on the global stability of the disease free equilibrium point. Fina lly, some numerical simulations are performed to ensure stability and convergence of the disease free equilibrium point.
The sterile insect technique consists in massive release of sterilized males in the aim to reduce the size of mosquitoes population or even eradicate it. In this work, we investigate the feasability of using the sterile insect technique as a barrier against reinvasion. More precisely, we provide some numerical simulations and mathematical results showing that performing the sterile insect technique on a band large enough may stop reinvasion.
63 - Y. Dumont , J. Thuilliez 2015
Community involvement and the preventive behavior of households are considered to be at the heart of vector-control strategies. In this work, we consider a simple theoretical model that enables us to take into account human behaviors that may interfe re with vector control. The model reflects the trade-off between perceived costs and observed efficacy. Our theoretical results emphasize that households may reduce their protective behavior in response to mechanical elimination techniques piloted by a public agent, leading to an increase of the total number of mosquitoes in the surrounding environment and generating a barrier for vector-borne diseases control. Our study is sufficiently generic to be applied to different arboviral diseases. It also shows that vector-control models and strategies have to take into account human behaviors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا