ترغب بنشر مسار تعليمي؟ اضغط هنا

Europium mixed-valence, long-range magnetic order, and dynamic magnetic response in EuCu$_{2}$(Si$_{x}$Ge$_{1-x}$)$_{2}$

330   0   0.0 ( 0 )
 نشر من قبل Kirill Nemkovski Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In mixed-valence or heavy-fermion systems, the hybridization between local $f$ orbitals and conduction band states can cause the suppression of long-range magnetic order, which competes with strong spin fluctuations. Ce- and Yb-based systems have been found to exhibit fascinating physical properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicinity of magnetic quantum critical points by use of various external control parameters (temperature, magnetic field, chemical composition). Recently, similar effects (mixed-valence, Kondo fluctuations, heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb), Eu has a multiple electron (hole) occupancy of its $4f$ shell, and the magnetic Eu$^{2+}$ state ($4f^7$) has no orbital component in the usual $LS$ coupling scheme, which can lead to a quite different and interesting physics. In the EuCu$_{2}$(Si$_{x}$Ge$_{1-x}$)$_{2}$ series, where the valence can be tuned by varying the Si/Ge ratio, it has been reported that a significant valence fluctuation can exist even in the magnetic order regime. This paper presents a detailed study of the latter material using different microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in which the composition dependence of the magnetic order and dynamics across the series is traced back to the change in the Eu valence state. In particular, the results support the persistence of valence fluctuations into the antiferromagnetic state over a sizable composition range below the critical Si concentration $x_c approx 0.65$. The sequence of magnetic ground states in the series is shown to reflect the evolution of the magnetic spectral response.



قيم البحث

اقرأ أيضاً

130 - Veljko Zlatic 2005
The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic 3+ Hunds rule configurations. The Si-Ge substitution is equivalent to chemical pressure which modifies the coupling and the relative occupation of the {it f} and conduction states.
PbFe$_{1/2}$Ta$_{1/2}$O$_{3}$ (PFT) belongs to the family of PbB$_{x}$B$_{1-x}$O$_{3}$ which have inherent chemical disorder at the B-site. Due to this disorder, a complex magnetic phase diagram is expected in the material. In this paper, we report e xperimental results of magnetic properties in PFT through macroscopic characterization, neutron scattering and M{o}ssbauer spectroscopy techniques. With these results we show for the first time that PbFe$_{1/2}$Ta$_{1/2}$O$_{3}$ behaves very similar to PbFe$_{1/2}$Nb$_{1/2}$O$_{3}$, i.e, it undergoes AF transition at 153 K and has a spinglass transition at 10 K, below which the antiferromagnetism coexists with spinglass. We suggest that the mechanism which is responsible for such a non-trivial ground state can be explained by a speromagnet-like spin arrangement similar to the one proposed for PbFe$_{1/2}$Nb$_{1/2}$O$_{3}$.
The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce$_{1-x}$La$_{x}$Cu$_{2}$Ge$_{2}$ due to nonmagnetic dilution by La are revealed through neutron diffraction results for $x=0.20$, $0.40$, $0.75$, and $0.85$. Magnetic Bragg peaks are found for $0.20le xle0.75$, and both the N{e}el temperature, $T_{textrm{N}}$, and the ordered magnetic moment per Ce, $mu$, linearly decrease with increasing $x$. The reduction in $mu$ points to strong hybridization of the increasingly diluted Ce $4f$ electrons, and we find a remarkable quadratic dependence of $mu$ on the Kondo-coherence temperature. We discuss our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory, and show that Ce$_{1-x}$La$_{x}$Cu$_{2}$Ge$_{2}$ provides an exceptional opportunity to quantitatively study competing magnetic interactions in a Kondo lattice.
Recently, several putative quantum spin liquid (QSL) states were discovered in ${tilde S} = 1/2$ rare-earth based triangular-lattice antiferromagnets (TLAF) with the delafossite structure. A way to clarify the origin of the QSL state in these systems is to identify ways to tune them from the putative QSL state towards long-range magnetic order. Here, we introduce the Ce-based TLAF KCeS$_2$ and show via low-temperature specific heat and $mu$SR investigations that it yields magnetic order below $T_{mathrm N} = 0.38$ K despite the same delafossite structure. We identify a well separated ${tilde S} = 1/2$ ground state for KCeS$_2$ from inelastic neutron scattering and embedded-cluster quantum chemical calculations. Magnetization and electron spin resonance measurements on single crystals indicate a strong easy-plane $g$~factor anisotropy, in agreement with the ab initio calculations. Finally, our specific-heat studies reveal an in-plane anisotropy of the magnetic field-temperature phase diagram which may indicate anisotropic magnetic interactions in KCeS$_2$.
Recent low temperature heat capacity (C$_P$) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$ have shown a strong sensitivity to the precise Tb concentration $x$, with a large anomaly exhibit ed for $x sim 0.005$ at $T_C sim 0.5$ K and no such anomaly and corresponding phase transition for $x le 0$. We have grown single crystal samples of Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, with approximate composition $x=-0.001, +0.0042$, and $+0.0147$, where the $x=0.0042$ single crystal exhibits a large C$_P$ anomaly at $T_C$=0.45 K, but neither the $x=-0.001$ nor the $x=+0.0147$ single crystals display any such anomaly. We present new time-of-flight neutron scattering measurements on the $x=-0.001$ and the $x=+0.0147$ samples which show strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks at low temperatures characteristic of short range antiferromagnetic spin ice (AFSI) order at zero magnetic field but only under field-cooled conditions, as was previously observed in our $x = 0.0042$ single crystal. These results show that the strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks and gapped AFSI state at low temperatures under field cooled conditions are robust features of Tb$_2$Ti$_2$O$_7$, and are not correlated with the presence or absence of the C$_P$ anomaly and phase transition at low temperatures. Further, these results show that the ordered state giving rise to the C$_P$ anomaly is confined to $0 leq x leq 0.01$ for Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, and is not obviously connected with conventional order of magnetic dipole degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا