ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical dependence of electrically-detected magnetic resonance in lightly-doped Si:P devices

76   0   0.0 ( 0 )
 نشر من قبل Chandrasekhar Ramanathan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrically-detected magnetic resonance (EDMR) provides a highly sensitive method for reading out the state of donor spins in silicon. The technique relies on a spin-dependent recombination (SDR) process involving dopant spins that are coupled to interfacial defect spins near the Si/SiO$_2$ interface. To prevent ionization of the donors, the experiments are performed at cryogenic temperatures and the mobile charge carriers needed are generated via optical excitation. The influence of this optical excitation on the SDR process and the resulting EDMR signal is still not well understood. Here, we use EDMR to characterize changes to both phosphorus and defect spin readout as a function of optical excitation using: a 980 nm laser with energy just above the silicon band edge at cryogenic temperatures; a 405 nm laser to generate hot surface-carriers; and a broadband white light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all the experiments. With near-infrared excitation, we find that the EDMR signal primarily arises from donor-defect pairs, while at higher photon energies there are significant additional contributions from defect-defect pairs. The optical penetration depth into silicon is also known to be strongly wavelength dependent at cryogenic temperatures. The energy of the optical excitation is observed to strongly modulate the kinetics of the SDR process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal as well as the dynamics of the SDR process.

قيم البحث

اقرأ أيضاً

Continuous wave optically and electrically detected magnetic resonance spectroscopy (cwODMR/cwEDMR) allow the investigation of paramagnetic states involved in spin-dependent transitions, like recombination and transport. Although experimentally simil ar to conventional electron spin resonance (ESR), there exist limitations when applying models originally developed for ESR to observables (luminescence and electric current) of cwODMR and cwEDMR. Here we present closed-form solutions for the modulation frequency dependence of cwODMR and cwEDMR based on an intermediate pair recombination model and discuss ambiguities which arise when attempting to distinguish the dominant spin-dependent processes underlying experimental data. These include: 1) a large number of quantitatively different models cannot be differentiated, 2) signs of signals are determined not only by recombination, but also by other processes like dissociation, intersystem-crossing, pair generation, and even experimental parameter such as, modulation frequency, microwave power, and temperature, 3) radiative and non-radiative recombination cannot be distinguished due to the observed signs of cwODMR and cwEDMR experiments.
Recently, a single atom transistor was deterministically fabricated using phosphorus in Si by H-desorption lithography with a scanning tunneling microscope (STM). This milestone in precision, achieved by operating the STM in the conventional tunnelin g mode, typically utilizes very slow ($sim!10^2~mathrm{nm^2/s}$) patterning speeds. By contrast, using the STM in a high voltage ($>10~mathrm{V}$) field emission mode, patterning speeds can be increased by orders of magnitude to $gtrsim!10^4~mathrm{nm^2/s}$. We show that the rapid patterning negligibly affects the functionality of relatively large micron-sized features, which act as contacting pads on these devices. For nanoscale structures, we show that the resulting transport is consistent with the donor incorporation chemistry enhancing the device definition to a scale of $10~mathrm{nm}$ even though the pattering spot size is $40~mathrm{nm}$.
260 - C. C. Lo , V. Lang , R. E. George 2010
We have measured the electrically detected magnetic resonance of channel-implanted donors in silicon field-effect transistors in resonant X- ($9.7:$GHz) and W-band ($94:$GHz) microwave cavities, with corresponding Zeeman fields of $0.35:$T and $3.36: $T, respectively. It is found that the conduction electron resonance signal increases by two orders of magnitude from X- to W-band, while the hyperfine-split donor resonance signals are enhanced by over one order of magnitude. We rule out a bolometric origin of the resonance signals, and find that direct spin-dependent scattering between the two-dimensional electron gas and neutral donors is inconsistent with the experimental observations. We propose a new polarization transfer model from the donor to the conduction electrons as the main contributer to the spin resonance signals observed.
We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped Silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the read-out of the spin state.
The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of an LCR tank circuit. Applied to a silicon field-effect transistor at milli-kelvin temperatures, this method shows a 25-fold increased signal- to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of > 300 kHz compared to the kHz bandwidth of conventional readout techniques. This increase in temporal resolution provides a method for future direct observations of spin dynamics in the electrical device characteristics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا