ﻻ يوجد ملخص باللغة العربية
In this paper we propose a penalized Crouzeix-Raviart element method for eigenvalue problems of second order elliptic operators. The key idea is to add a penalty term to tune the local approximation property and the global continuity property of the discrete eigenfunctions. The feature of this method is that by adjusting the penalty parameter, the resulted discrete eigenvalues can be in a state of chaos, and consequently a large portion of them can be reliable and approximate the exact ones with high accuracy. Furthermore, we design an algorithm to select such a quasi-optimal penalty parameter. Finally, we provide numerical tests to demonstrate the performance of the proposed method.
For the non-conforming Crouzeix-Raviart boundary elements from [Heuer, Sayas: Crouzeix-Raviart boundary elements, Numer. Math. 112, 2009], we develop and analyze a posteriori error estimators based on the $h-h/2$ methodology. We discuss the optimal r
We investigate the convergence of the Crouzeix-Raviart finite element method for variational problems with non-autonomous integrands that exhibit non-standard growth conditions. While conforming schemes fail due to the Lavrentiev gap phenomenon, we p
In this paper, we present two variants of the Additive Schwarz Method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second order elliptic problems with discontinuous coefficients where the discontinuities are only across subd
Two asymptotically exact a posteriori error estimates are proposed for eigenvalues by the nonconforming Crouzeix--Raviart and enriched Crouzeix-- Raviart elements. The main challenge in the design of such error estimators comes from the nonconformity
We discuss the error analysis of the lowest degree Crouzeix-Raviart and Raviart-Thomas finite element methods applied to a two-dimensional Poisson equation. To obtain error estimations, we use the techniques developed by Babuv{s}ka-Aziz and the autho