ترغب بنشر مسار تعليمي؟ اضغط هنا

Standard Coupling Unification in SO(10), Hybrid Seesaw Neutrino Mass and Leptogenesis, Dark Matter, and Proton Lifetime Predictions

62   0   0.0 ( 0 )
 نشر من قبل Mina Ketan Parida
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss gauge coupling unification of the SM descending directly from SO(10) while providing solutions to the three outstanding problems: neutrino masses, dark matter, and the baryon asymmetry of the universe. Conservation of matter parity as gauged discrete symmetry in the model calls for high-scale spontaneous symmetry breaking through ${126}_H$ Higgs representation. This naturally leads to the hybrid seesaw formula for neutrino masses mediated by heavy scalar triplet and right-handed neutrinos. The seesaw formula predicts two distinct patterns of RH$ u$ masses, one hierarchical and another not so hierarchical (or compact) when fitted with the neutrino oscillation data. Predictions of the baryon asymmetry via leptogenesis are investigated through the decays of both the patterns of RH$ u$ masses. A complete flavor analysis has been carried out to compute CP-asymmetries and solutions to Boltzmann equations have been utilized to predict the baryon asymmetry. The additional contribution to vertex correction mediated by the heavy left-handed triplet scalar is noted to contribute as dominantly as other Feynman diagrams. We have found successful predictions of the baryon asymmetry for both the patterns of RH$ u$ masses. The triplet fermionic dark matter at the TeV scale carrying even matter parity is naturally embedded into the non-standard fermionic representation ${45}_F$ of SO(10). In addition to the triplet scalar and the triplet fermion, the model needs a nonstandard color octet fermion of mass $sim 10^7$ GeV to achieve precision gauge coupling unification. Threshold corrections due to superheavy components of ${126}_H$ and other representations are estimated and found to be substantial. It is noted that the proton life time predicted by the model is accessible to the ongoing and planned experiments over a wide range of parameter space.



قيم البحث

اقرأ أيضاً

We study $S_{4}$ flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile fermions leading to a keV scale sterile neutrino dark matter and two pairs of quasi-Dirac states. The CP violating decay of the lightest quasi- Dirac pair present in the model generates lepton asymmetry which then converts to baryon asymmetry of the universe. Thus this model can provide a simultaneous solution for non zero neutrino mass, dark matter content of the universes and the observed baryon asymmetry. The $S_{4}$ flavor symmetry in this model is augmented by additional $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. A detailed numerical analysis has been carried out to obtain dark matter mass, DM-active mixing as well as BAU both for normal hierarchy as well as inverted hierarchy. We have tried to correlate the two cosmological observables and found a common parameter space satisfying the DM phenomenology and BAU. The parameter space of the model is further constrained from the latest cosmological bounds on the above mentioned observables.
We study the proton lifetime in the $SO(10)$ Grand Unified Theory (GUT), which has the left-right (LR) symmetric gauge theory below the GUT scale. In particular, we focus on the minimal model without the bi-doublet Higgs field in the LR symmetric mod el, which predicts the LR-breaking scale at around $10^{10text{--}12}$ GeV. The Wilson coefficients of the proton decay operators turn out to be considerably larger than those in the minimal $SU(5)$ GUT model especially when the Standard Model Yukawa interactions are generated by integrating out extra vector-like multiplets. As a result, we find that the proton lifetime can be within the reach of the Hyper-Kamiokande experiment even when the GUT gauge boson mass is in the $10^{16text{--}17}$ GeV range. We also show that the mass of the extra vector-like multiplets can be generated by the Peccei-Quinn symmetry breaking in a consistent way with the axion dark matter scenario.
In the Minimal Supersymmetric Standard Model (MSSM), the scalar neutrino $tilde{ u}_L$ has odd R parity, yet it has long been eliminated as a dark-matter candidate because it scatters elastically off nuclei through the $Z$ boson, yielding a cross sec tion many orders of magnitude above the experimental limit. We show how it can be reinstated as a dark-matter candidate by splitting the masses of its real and imaginary parts in an extension of the MSSM with scalar triplets. As a result, radiative Majorana neutrino masses are also generated. In addition, decays of the scalar triplets relate the abundance of this asymmetric dark matter to the baryon asymmetry of the Universe through leptogenesis.
A non-supersymmetric renormalizable $SO(10)$ model is investigated for its viability in explaining the observed fermion masses and mixing parameters along with the baryon asymmetry produced via thermal leptogenesis. The Yukawa sector of the model con sists of complex $10_H$ and $overline{126}_H$ scalars with a Peccei-Quinn like symmetry and it leads to strong correlations among the Yukawa couplings of all the standard model fermions including the couplings and masses of the right-handed (RH) neutrinos. The latter implies the necessity to include the second lightest RH neutrino and flavor effects for the precision computation of leptogenesis. We use the most general density matrix equations to calculate the temperature evolution of flavoured leptonic asymmetry. A simplified analytical solution of these equations, applicable to the RH neutrino spectrum predicted in the model, is also obtained which allows one to fit the observed baryon to photon ratio along with the other fermion mass observables in a numerically efficient way. The analytical and numerical solutions are found to be in agreement within a factor of ${cal O}(1)$. We find that the successful leptogenesis in this model does not prefer any particular value for leptonic Dirac and Majorana CP phases and the entire range of values of these observables is found to be consistent. The model specifically predicts (a) the lightest neutrino mass $m_{ u_1}$ between 2-8 meV, (b) the effective mass of neutrinoless double beta decay $m_{beta beta}$ between 4-10 meV, and (c) a particular correlation between the Dirac and one of the Majorana CP phases.
The appealing feature of inverse seesaw models is that the Standard Model (SM) neutrino mass emerges from the exchange of TeV scale singlets with sizable Yukawa couplings, which can be tested at colliders. However, the tiny Majorana mass splitting be tween TeV singlets, introduced to accommodate small neutrino masses, is left unexplained. Moreover, we argue that these models suffer from a structural limitation that prevents a successful leptogenesis if one insists on having unsuppressed Yukawa couplings and TeV scale singlets. In this work we propose a hybrid seesaw model, where we replace the mass splitting with a coupling to a high scale seesaw module including a TeV scalar. We show that this structure achieves the goal of filling both the above gaps with couplings of order unity. The necessary structure automatically arises embedding the seesaw mechanism in composite Higgs models, but may also be enforced by new gauge symmetries in a weakly-coupled theory. Our hybrid seesaw models have distinguishing features compared to the standard high scale type-I seesaw and inverse seesaw. Firstly, they have much richer phenomenology. Indeed, they generally predict new TeV scale physics (including scalars) potentially accessible at present and future colliders, whereas weakly-coupl
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا