ترغب بنشر مسار تعليمي؟ اضغط هنا

Interactive and Iterative Discovery of Entity Network Subgraphs

141   0   0.0 ( 0 )
 نشر من قبل Hao Wu
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph mining to extract interesting components has been studied in various guises, e.g., communities, dense subgraphs, cliques. However, most existing works are based on notions of frequency and connectivity and do not capture subjective interestingness from a users viewpoint. Furthermore, existing approaches to mine graphs are not interactive and cannot incorporate user feedbacks in any natural manner. In this paper, we address these gaps by proposing a graph maximum entropy model to discover surprising connected subgraph patterns from entity graphs. This model is embedded in an interactive visualization framework to enable human-in-the-loop, model-guided data exploration. Using case studies on real datasets, we demonstrate how interactions between users and the maximum entropy model lead to faster and explainable conclusions.

قيم البحث

اقرأ أيضاً

The connectivity structure of graphs is typically related to the attributes of the nodes. In social networks for example, the probability of a friendship between two people depends on their attributes, such as their age, address, and hobbies. The con nectivity of a graph can thus possibly be understood in terms of patterns of the form the subgroup of individuals with properties X are often (or rarely) friends with individuals in another subgroup with properties Y. Such rules present potentially actionable and generalizable insights into the graph. We present a method that finds pairs of node subgroups between which the edge density is interestingly high or low, using an information-theoretic definition of interestingness. This interestingness is quantified subjectively, to contrast with prior information an analyst may have about the graph. This view immediately enables iterative mining of such patterns. Our work generalizes prior work on dense subgraph mining (i.e. subgraphs induced by a single subgroup). Moreover, not only is the proposed method more general, we also demonstrate considerable practical advantages for the single subgroup special case.
Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependencies. In this work, we hypothesize that these two tasks are tightly coupled because two synonymou s entities tend to have similar likelihoods of belonging to various semantic classes. This motivates us to design SynSetExpan, a novel framework that enables two tasks to mutually enhance each other. SynSetExpan uses a synonym discovery model to include popular entities infrequent synonyms into the set, which boosts the set expansion recall. Meanwhile, the set expansion model, being able to determine whether an entity belongs to a semantic class, can generate pseudo training data to fine-tune the synonym discovery model towards better accuracy. To facilitate the research on studying the interplays of these two tasks, we create the first large-scale Synonym-Enhanced Set Expansion (SE2) dataset via crowdsourcing. Extensive experiments on the SE2 dataset and previous benchmarks demonstrate the effectiveness of SynSetExpan for both entity set expansion and synonym discovery tasks.
Network embeddings have become very popular in learning effective feature representations of networks. Motivated by the recent successes of embeddings in natural language processing, researchers have tried to find network embeddings in order to explo it machine learning algorithms for mining tasks like node classification and edge prediction. However, most of the work focuses on finding distributed representations of nodes, which are inherently ill-suited to tasks such as community detection which are intuitively dependent on subgraphs. Here, we propose sub2vec, an unsupervised scalable algorithm to learn feature representations of arbitrary subgraphs. We provide means to characterize similarties between subgraphs and provide theoretical analysis of sub2vec and demonstrate that it preserves the so-called local proximity. We also highlight the usability of sub2vec by leveraging it for network mining tasks, like community detection. We show that sub2vec gets significant gains over state-of-the-art methods and node-embedding methods. In particular, sub2vec offers an approach to generate a richer vocabulary of features of subgraphs to support representation and reasoning.
Understanding prospective clients becomes increasingly important as companies aim to enlarge their market bases. Traditional approaches typically treat each client in isolation, either studying its interactions or similarities with existing clients. We propose the Client Network, which considers the entire client ecosystem to predict the success of sale pitches for targeted clients by complex network analysis. It combines a novel ranking algorithm with data visualization and navigation. Based on historical interaction data between companies and clients, the Client Network leverages organizational connectivity to locate the optimal paths to prospective clients. The user interface supports exploring the client ecosystem and performing sales-essential tasks. Our experiments and user interviews demonstrate the effectiveness of the Client Network and its success in supporting sellers day-to-day tasks.
Whether the goal is to estimate the number of people that live in a congressional district, to estimate the number of individuals that have died in an armed conflict, or to disambiguate individual authors using bibliographic data, all these applicati ons have a common theme - integrating information from multiple sources. Before such questions can be answered, databases must be cleaned and integrated in a systematic and accurate way, commonly known as record linkage, de-duplication, or entity resolution. In this article, we review motivational applications and seminal papers that have led to the growth of this area. Specifically, we review the foundational work that began in the 1940s and 50s that have led to modern probabilistic record linkage. We review clustering approaches to entity resolution, semi- and fully supervised methods, and canonicalization, which are being used throughout industry and academia in applications such as human rights, official statistics, medicine, citation networks, among others. Finally, we discuss current research topics of practical importance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا