ﻻ يوجد ملخص باللغة العربية
A magnetic atomic impurity inside a superconductor locally distorts superconductivity. They scatter Cooper pairs as a potential with broken time-reversal symmetry, what leads to localized bound states with subgap excitation energies, named hereon Shiba states. Most conventional approaches to study Shiba states treat magnetic impurities as point scatterers with an isotropic exchange interaction, while the complex internal structure of magnetic impurities is usually neglected. Here, we show that the number and the shape of Shiba states are correlated to the spin-polarized atomic orbitals of the impurity, hybridized with the superconducting host, as supported by Density Functional Theory simulations. Using high-resolution scanning tunneling spectroscopy, we spatially map the five Shiba excitations found on sub-surface chromium atoms in Pb(111), resolving both their particle and hole components. While the maps of particle components resemble the textit{d} orbitals of embedded Cr atoms, the hole components differ strongly from them. The orbital fingerprints of Shiba states thus unveil the magnetic ground state of the impurity, and identify scattering channels and interactions, all valuable tools for designing atomic-scale superconducting devices.
Recently topological superconducting states has attracted a lot of interest. In this work, we consider a topo- logical superconductor with $Z_2$ topological mirror order [1] and s$pm$-wave superconducting pairing symmetry, within a two-orbital model
We consider a superconducting film exchange-coupled to a close-by chiral magnetic layer and study how magnetic skyrmions can induce the formation of Majorana bound states (MBS) in the superconductor. Inspired by a proposal by Yang et al. [Phys. Rev.
We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of spin-orbit coupling breaks the $mathbb{SU}(2)$-spin symmetry and causes the superconducting order parameter to have gene
We investigate one-dimensional (1D) Majorana bound states (MBSs) realized in terms of the helical edge states of a 2D quantum spin-Hall insulator (QSHI) in a heterostructure with a superconducting substrate and two ferromagnetic insulators (FIs). By
Recent studies of mutually interacting magnetic atoms coupled to a superconductor have gained enormous interest due to the potential realization of topological superconductivity. The Kondo exchange coupling J_K of such atoms with the electrons in the