ﻻ يوجد ملخص باللغة العربية
There has been an intense debate on the quantum versus classical origin of ghost imaging with a thermal light source over the last two decades. A lot of distinguished work has contributed to this topic, both theoretically and experimentally, however, to this day this quantum-classical dilemma still persists. Here we formulate for the first time a density matrix in the photon orbital angular momentum (OAM) Hilbert space to fully characterize the two-arm ghost imaging system with the basic definition of thermal light sources. Our formulation offers a mathematically precise method to describe the formation of a ghost image in a nonlocal fashion. More importantly, it provides a more physically intuitive picture to reveal the quantumness hidden in the thermal ghost imaging, and therefore, presenting a sound resolution to the ongoing quantum-classical dilemma, which distinguishes the quantum correlations beyond entanglement in terms of geometric measure of discord. Our work also suggests further studies of using thermal multi-photon OAM states directly to implement some quantum information tasks.
High-resolution ghost image and ghost diffraction experiments are performed by using a single source of thermal-like speckle light divided by a beam splitter. Passing from the image to the diffraction result solely relies on changing the optical setu
We present a complete and exhaustive theory of signal-to-noise-ratio in bipartite ghost imaging with classical (thermal) and quantum (twin beams) light. The theory is compared with experiment for both twin beams and thermal light in a certain regime of interest.
As one of important analysis tools, microscopes with high spatial resolution are indispensable for scientific research and medical diagnosis, and much attention is always focused on the improvement of resolution. Over the past decade, a novel techniq
We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from
For ghost imaging, pursuing high resolution images and short acquisition times required for reconstructing images are always two main goals. We report an image reconstruction algorithm called compressive sampling (CS) reconstruction to recover ghost