ترغب بنشر مسار تعليمي؟ اضغط هنا

Current status of MSSM Higgs sector with LHC 13 TeV data

77   0   0.0 ( 0 )
 نشر من قبل Rahool Kumar Barman
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

ATLAS and CMS collaborations have reported the results on the Higgs search analyzing $sim 36$ fb$^{-1}$ data from Run-II of LHC at 13 TeV. In this work, we study the Higgs sector of the phenomenological Minimal Supersymmetric Standard Model, in light of the recent Higgs data, by studying separately the impact of Run-I and Run-II data. One of the major impacts of the new data on the parameter space comes from the direct searches of neutral CP-even and CP-odd heavy Higgses ($H$ and $A$, respectively) in the $H/A to tau^{+} tau^{-}$ channel which disfavours high $tanbeta$ regions more efficiently than Run-I data. Secondly, we show that the latest result of the rare radiative decay of $B$ meson imposes a slightly stronger constraint on low $tan beta$ and low $M_A$ region of the parameter space, as compared to its previous measurement. Further, we find that in a global fit Run-II light Higgs signal strength data is almost comparable in strength with the corresponding Run-I data. Finally, we discuss scenarios with the Heavy Higgs boson decaying into electroweakinos and third generation squarks and sleptons.

قيم البحث

اقرأ أيضاً

The program HiggsSignals confronts the predictions of models with arbitrary Higgs sectors with the available Higgs signal rate and mass measurements, resulting in a likelihood estimate. A new version of the program, HiggsSignals-2, is presented that contains various improvements in its functionality and applicability. In particular, the new features comprise improvements in the theoretical input framework and the handling of possible complexities of beyond-the-SM Higgs sectors, as well as the incorporation of experimental results in the form of Simplified Template Cross Section (STXS) measurements. The new functionalities are explained, and a thorough discussion of the possible statistical interpretations of the HiggsSignals results is provided. The performance of HiggsSignals is illustrated for some example analyses. In this context the importance of public information on certain experimental details like efficiencies and uncertainty correlations is pointed out. HiggsSignals is continuously updated to the latest experimental results and can be obtained at https://www.gitlab.com/higgsbounds/higgssignals .
We describe a likelihood analysis using MasterCode of variants of the MSSM in which the soft supersymmetry-breaking parameters are assumed to have universal values at some scale $M_{in}$ below the supersymmetric grand unification scale $M_{GUT}$, as can occur in mirage mediation and other models. In addition to $M_{in}$, such `sub-GUT models have the 4 parameters of the CMSSM, namely a common gaugino mass $m_{1/2}$, a common soft supersymmetry-breaking scalar mass $m_0$, a common trilinear mixing parameter $A$ and the ratio of MSSM Higgs vevs $tanbeta$, assuming that the Higgs mixing parameter $mu > 0$. We take into account constraints on strongly- and electroweakly-interacting sparticles from $sim 36$/fb of LHC data at 13 TeV and the LUX and 2017 PICO, XENON1T and PandaX-II searches for dark matter scattering, in addition to the previous LHC and dark matter constraints as well as full sets of flavour and electroweak constraints. We find a preference for $M_{in} sim 10^5$ to $10^9$ GeV, with $M_{in} sim M_{GUT}$ disfavoured by $Delta chi^2 sim 3$ due to the ${rm BR}(B_{s, d} to mu^+mu^-)$ constraint. The lower limits on strongly-interacting sparticles are largely determined by LHC searches, and similar to those in the CMSSM. We find a preference for the LSP to be a Bino or Higgsino with $tilde{chi^0_1} sim 1$ TeV, with annihilation via heavy Higgs bosons $H/A$ and stop coannihilation, or chargino coannihilation, bringing the cold dark matter density into the cosmological range. We find that spin-independent dark matter scattering is likely to be within reach of the planned LUX-Zeplin and XENONnT experiments. We probe the impact of the $(g-2)_mu$ constraint, finding similar results whether or not it is included.
We show that the use of forward proton detectors at the LHC installed at 220 m and 420 m distance around ATLAS and / or CMS can provide important information on the Higgs sector of the MSSM. We analyse central exclusive production of the neutral CP-e ven Higgs bosons h and H and their decays into bottom quarks, tau leptons and W bosons in different MSSM benchmark scenarios. Using plausible estimates for the achievable experimental efficiencies and the relevant background processes, we find that the prospective sensitivity of the diffractive Higgs production will allow to probe interesting regions of the M_A--tan_beta parameter plane of the MSSM. Central exclusive production of the CP-even Higgs bosons of the MSSM may provide a unique opportunity to access the bottom Yukawa couplings of the Higgs bosons up to masses of M_H lsim 250 GeV. We also discuss the prospects for identifying the CP-odd Higgs boson, A, in diffractive processes at the LHC.
This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplified template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.
Universal Extra Dimension (UED) is a well-motivated and well-studied scenario. One of the main motivations is the presence of a dark matter (DM) candidate namely, the lightest level-1 Kaluza-Klein (KK) particle (LKP), in the particle spectrum of UED. The minimal version of UED (mUED) scenario is highly predictive with only two parameters namely, the radius of compactification and cut-off scale, to determine the phenomenology. Therefore, stringent constraint results from the WMAP/PLANCK measurement of DM relic density (RD) of the universe. The production and decays of level-1 quarks and gluons in UED scenarios give rise to multijet final states at the Large Hadron Collider (LHC) experiment. We study the ATLAS search for multijet plus missing transverse energy signatures at the LHC with 13 TeV center of mass energy and 139 inverse femtobarn integrated luminosity. In view of the fact that the DM RD allowed part of mUED parameter-space has already been ruled out by the ATLAS multijet search, we move on to a less restricted version of UED namely, the non-minimal UED (nmUED), with non-vanishing boundary-localized terms (BLTs). The presence of BLTs significantly alters the dark matter as well as the collider phenomenology of nmUED. We obtain stringent bounds on the BLT parameters from the ATLAS multijet plus missing transverse energy search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا