ترغب بنشر مسار تعليمي؟ اضغط هنا

KIC 3749404: A heartbeat Star with Rapid Apsidal Advance Indicative of a Tertiary Component

101   0   0.0 ( 0 )
 نشر من قبل Kelly Hambleton
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heartbeat stars are eccentric (e > 0.2) ellipsoidal variables whose light curves resemble a cardiogram. We present the observations and corresponding model of KIC 3749404, a highly eccentric (e = 0.66), short period (P = 20.3 d) heartbeat star with tidally induced pulsations. A binary star model was created using PHOEBE, which we modified to include tidally induced pulsations and Doppler boosting. The morphology of the photometric periastron variation (heartbeat) depends strongly on the eccentricity, inclination and argument of periastron. We show that the inclusion of tidally induced pulsations in the model significantly changes the parameter values, specifically the inclination and those parameters dependent on it. Furthermore, we determine the rate of apsidal advance by modelling the periastron variation at the beginning and end of the 4-yr Kepler data set and dividing by the elapsed time. We compare the model with the theoretical expectations for classical and general relativistic apsidal motion and find the observed rate to be two orders of magnitude greater than the theoretical rate. We find that the observed rate cannot be explained by tidally induced pulsations alone and consequently hypothesise the presence of a third body in the system.

قيم البحث

اقرأ أيضاً

331 - Jian-wen Ou , Cong Yu , Ming Yang 2021
Apsidal motion is a gradual shift in the position of periastron. The impact of dynamic tides on apsidal motion has long been debated, because the contribution could not be quantified due to the lack of high quality observations. KIC 4544587 with tida lly excited oscillations has been observed by textit{Kepler} high-precision photometric data based on long time baseline and short-cadence schema. In this paper, we compute the rate of apsidal motion that arises from the dynamic tides as $19.05pm 1.70$ mrad yr$^{-1}$ via tracking the orbital phase shifts of tidally excited oscillations. We also calculate the procession rate of the orbit due to the Newtonian and general relativistic contribution as $21.49 pm 2.8$ and $2.4 pm 0.06$ mrad yr$^{-1}$, respectively. The sum of these three factors is in excellent agreement with the total observational rate of apsidal motion $42.97 pm 0.18$ mrad yr$^{-1}$ measured by eclipse timing variations. The tidal effect accounts for about 44% of the overall observed apsidal motion and is comparable to that of the Newtonian term. Dynamic tides have a significant contribution to the apsidal motion. The analysis method mentioned in this paper presents an alternative approach to measuring the contribution of the dynamic tides quantitatively.
This paper summarizes the project work on asteroseismology at the ERASMUS+ GATE 2020 Summer school on space satellite data. The aim was to do a global asteroseismic analysis of KIC 5006817 and quantify its stellar properties using the high-quality, s tate of the art space missions data. We employed the aperture photometry to analyze the data from the Kepler space telescope and the Transiting Exoplanet Survey Satellite (TESS). Using the lightkurve Python package, we have derived the asteroseismic parameters and calculated the stellar parameters using the scaling relations. Our analysis of KIC 5006817 confirmed its classification as a heartbeat binary. The rich oscillation spectrum facilitate estimating power excess ($ u_{rm max}$) at 145.50$pm$0.50 $mu$Hz and large frequency separation ($Delta u$) to be 11.63$pm$0.10 $mu$Hz. Our results showed that the primary component is a low-luminosity, red-giant branch star with a mass, radius, surface gravity, and luminosity of 1.53$pm$0.07 M$_odot$, 5.91$pm$0.12 R$_odot$, 3.08$pm$0.01 dex, and 19.66$pm$0.73 L$_odot$, respectively. The orbital period of the system is 94.83$pm$0.05 d.
We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (~1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes ex cited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayal telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller et al., 2017) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.
We analyse the fifth roAp star reported in the Kepler field, KIC 7582608, discovered with the SuperWASP project. The object shows a high frequency pulsation at 181.7324 d$^{-1}$ (P=7.9 min) with an amplitude of 1.45 mmag, and low frequency rotational modulation corresponding to a period of 20.4339 d with an amplitude of 7.64 mmag. Spectral analysis confirms the Ap nature of the target, with characteristic lines of Eu II, Nd III and Pr III present. The spectra are not greatly affected by broadening, which is consistent with the long rotational period found from photometry. From our spectral observations we derive a lower limit on the mean magnetic field modulus of <B> = 3.05$pm$0.23 kG. Long Cadence Kepler observations show a frequency quintuplet split by the rotational period of the star, typical for an oblique pulsator. We suggest the star is a quadrupole pulsator with a geometry such that $isim66^circ$ and $betasim33^circ$. We detect frequency variations of the pulsation in both the WASP and Kepler data sets on many time scales. Linear, non-adiabatic stability modelling allows us to constrain a region on the HR diagram where the pulsations are unstable, an area consistent with observations.
242 - X. Zhou , B. Soonthornthum 2019
Two sets of multiple-color ($B, V, R_c, I_c$) light curves of PZ UMa were observed in dependently with the 2.4 meter telescope at the Thai National Observatory and the 1 meter telescope at Yunnan Observatories. The light curves were analyzed with the Wilson-Devinney program and the two sets of light curves produced consistent results, which show that PZ UMa is a W-subtype contact binary with an extreme mass ratio ($M_{1}/M_{2} = 0.18)$. The basic physical parameters of PZ UMa were determined to be $M_{2} = 0.77(2)M_odot$, $M_{1} = 0.14(1)M_odot$, $R_{2} = 0.92(1)R_odot$, $R_{1} = 0.43(1)R_odot$, $L_{2} = 0.46(2)L_odot$ and $L_{1} = 0.15(3)L_odot$. The orbital period analysis of PZ UMa revealed a 13.22 year periodicity, which implies that there may be a tertiary component orbiting around the binary system. The mass and orbital radius of the tertiary component were calculated to be $M_{3} = 0.88 M_odot$ and $a_{3} = 3.67 AU$, if the orbit was coplanar with the central binary system. It is interesting that the minimum mass of the tertiary was calculated to be $M_{3min} = 0.84 M_odot$, which means the tertiary component is even larger than the primary star and the secondary one of PZ UMa. PZ UMa is a late-type contact binary with stellar activity. The OConnell effect appeared on its light curves when it was observed on April 2016. However, the OConnell effect reversed when the target was observed again on December 2016. The changes of the OConnell effect in such a short time-scale strongly support the occurrence of rapidly changing magnetic activity on this W UMa binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا