ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological surface states on Bi(111) based on empirical tight-binding calculations

66   0   0.0 ( 0 )
 نشر من قبل Yoshiyuki Ohtsubo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The topological order of single-crystal Bi and its surface states on the (111) surface are studied in detail based on empirical tight-binding (TB) calculations. New TB parameters are presented that are used to calculate the surface states of semi-infinite single-crystal Bi(111), which agree with the experimental angle-resolved photoelectron spectroscopy results. The influence of the crystal lattice distortion is surveyed and a topological phase transition is found that is driven by in-plane expansion. In contrast with the semi-infinite system, the surface-state dispersions on finite-thickness slabs are non-trivial irrespective of the bulk topological order. The role of the interaction between the top and bottom surfaces in the slab is systematically studied, and it is revealed that a very thick slab is required to properly obtain the bulk topological order of Bi from the (111) surface state: above 150 biatomic layers in this case.



قيم البحث

اقرأ أيضاً

Freestanding single-bilayer Bi(111) is a two-dimensional topological insulator with edge states propagating along its perimeter. Given the interlayer coupling experimentally, the topological nature of Bi(111) thin films and the impact of the supporti ng substrate on the topmost Bi bilayer are still under debate. Here, combined with scanning tunneling microscopy and first-principles calculations, we systematically study the electronic properties of Bi(111) thin films grown on a NbSe2 substrate. Two types of non-magnetic edge structures, i.e., a conventional zigzag edge and a 2x1 reconstructed edge, coexist alternately at the boundaries of single bilayer islands, the topological edge states of which exhibit remarkably different energy and spatial distributions. Prominent edge states are persistently visualized at the edges of both single and double bilayer Bi islands, regardless of the underlying thickness of Bi(111) thin films. We provide an explanation for the topological origin of the observed edge states that is verified with first-principles calculations. Our paper clarifies the long-standing controversy regarding the topology of Bi(111) thin films and reveals the tunability of topological edge states via edge modifications.
117 - Yin Shi , Meng Wu , Fan Zhang 2014
The characterization and applications of topological insulators depend critically on their protected surface states, which, however, can be obscured by the presence of trivial dangling bond states. Our first principle calculations show that this is t he case for the pristine $(111)$ surface of SnTe. Yet, the predicted surface states unfold when the dangling bond states are passivated in proper chemisorption. We further extract the anisotropic Fermi velocities, penetration lengths and anisotropic spin textures of the unfolded $barGamma$- and $bar M$-surface states, which are consistent with the theory in http://dx.doi.org/10.1103/PhysRevB.86.081303 Phys. Rev. B 86, 081303 (R). More importantly, this chemisorption scheme provides an external control of the relative energies of different Dirac nodes, which is particularly desirable in multi-valley transport.
143 - Xiao Li , Hai-Wen Liu , Hua Jiang 2014
A topological insulator is a novel quantum state, characterized by symmetry-protected non-trivial edge/surface states. Our first-principle simulations show the significant effects of the chemical decoration on edge states of topological Bi(111) bilay er nanoribbon, which remove the trivial edge state and recover the Dirac linear dispersion of topological edge state. By comparing the edge states with and without chemical decoration, the Bi(111) bilayer nanoribbon offers a simple system for assessing conductance fluctuation of edge states. The chemical decoration can also modify the penetration depth and the spin texture of edge states. A low-energy effective model is proposed to explain the distinctive spin texture of Bi(111) bilayer nanoribbon, which breaks the spin-momentum orthogonality along the armchair edge.
Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective models. In this work, we extend the existing methodology of creating Wannier tight-binding models from first-principles calculations by introducing the symmetrization post-processing step, which enables the production of Wannier-like models that respect the symmetries of the considered crystal. Furthermore, we implement automatic workflows, which allow for producing a large number of tight-binding models for large classes of chemically and structurally similar compounds, or materials subject to external influence such as strain. As a particular illustration, these workflows are applied to strained III-V semiconductor materials. These results can be used for further study of topological phase transitions in III-V quantum wells.
Using first-principles calculations combined with Boltzmann transport theory, we investigate the effects of topological edge states on the thermoelectric properties of Bi nanoribbons. It is found that there is a competition between the edge and bulk contributions to the Seebeck coefficients. However, the electronic transport of the system is dominated by the edge states because of its much larger electrical conductivity. As a consequence, a room temperature value exceeding 3.0 could be achieved for both p- and n-type systems when the relaxation time ratio between the edge and the bulk states is tuned to be 1000. Our theoretical study suggests that the utilization of topological edge states might be a promising approach to cross the threshold of the industrial application of thermoelectricity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا