ﻻ يوجد ملخص باللغة العربية
Recent breakthroughs in electrical detection and manipulation of antiferromagnets have opened a new avenue in the research of non-volatile spintronic devices. Antiparallel spin sublattices in antiferromagnets, producing zero dipolar fields, lead to the insensitivity to magnetic field perturbations, multi-level stability, ultra-fast spin dynamics and other favorable characteristics which may find utility in fields ranging from magnetic memories to optical signal processing. However, the absence of a net magnetic moment and the ultra-short magnetization dynamics timescales make antiferromagnets notoriously difficult to study by common magnetometers or magnetic resonance techniques. In this paper we demonstrate the experimental determination of the Neel vector in a thin film of antiferromagnetic CuMnAs which is the prominent material used in the first realization of antiferromagnetic memory chips. We employ a femtosecond pump-probe magneto-optical experiment based on magnetic linear dichroism. This table-top optical method is considerably more accessible than the traditionally employed large scale facility techniques like neutron diffraction and X-ray magnetic dichroism measurements. This optical technique allows an unambiguous direct determination of the Neel vector orientation in thin antiferromagnetic films utilized in devices directly from measured data without fitting to a theoretical model.
Metallic antiferromagnets with broken inversion symmetry on the two sublattices, strong spin-orbit coupling and high N{e}el temperatures offer new opportunities for applications in spintronics. Especially Mn$_{2}$Au, with high N{e}el temperature and
Electrical detection of the 180 deg spin reversal, which is the basis of the operation of ferromagnetic memories, is among the outstanding challenges in the research of antiferromagnetic spintronics. Analogous effects to the ferromagnetic giant or tu
The family of monolayer two-dimensional (2D) materials hosts a wide range of interesting phenomena, including superconductivity, charge density waves, topological states and ferromagnetism, but direct evidence for antiferromagnetism in the monolayer
The Weyl antiferromagnet Mn$_3$Sn has recently attracted significant attention as it exhibits various useful functions such as large anomalous Hall effect that are normally absent in antiferromagnets. Here we report the thin film fabrication of the s
Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the ep