ﻻ يوجد ملخص باللغة العربية
We show that phase transitions in spin-one Bose gases and stacked triangular Heisenberg antiferromagnets -- an example of frustrated magnets with competing interactions -- are described by the same Landau-Ginzburg-Wilson Hamiltonian with O(3)$times$O(2) symmetry. In agreement with previous nonperturbative-renormalization-group studies of the three-dimensional O(3)$times$O(2) model, we find that the transition from the normal phase to the superfluid ferromagnetic phase in a spin-one Bose gas is weakly first order and shows pseudoscaling behavior. The (nonuniversal) pseudoscaling exponent $ u$ is fully determined by the scattering lengths $a_0$ and $a_2$. We provide estimates of $ u$ in $^{87}$Rb, $^{41}$K and $^7$Li atom gases which can be tested experimentally. We argue that pseudoscaling comes from either a crossover phenomena due to proximity of the O(6) Wilson-Fisher fixed point ($^{87}$Rb and $^{41}$K) or the existence of two unphysical fixed points (with complex coordinates) which slow down the RG flow ($^7$Li). These unphysical fixed points are a remnant of the chiral and antichiral fixed points that exist in the O($N$)$times$O(2) model when $N$ is larger than $N_csimeq 5.3$ (the transition being then second order and controlled by the chiral fixed point). Finally, we discuss a O(2)$times$O(2) lattice model and show that our results, even though we find the transition to be first order, are compatible with Monte Carlo simulations yielding an apparent second-order transition.
Although there is a broad consensus on the fact that critical behavior in stacked triangular Heisenberg antiferromagnets --an example of frustrated magnets with competing interactions-- is described by a Landau-Ginzburg-Wilson Hamiltonian with O(3)$t
We unravel the correlation effects of the second-order quantum phase transitions emerging on the ground state of a harmonically trapped spin-1 Bose gas, upon varying the involved Zeeman terms, as well as its breathing dynamics triggered by quenching
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch
Coarsening dynamics theory has successfully described the equilibration of a broad class of systems.By studying the relaxation of a periodic array of microcondensates immersed in a Fermi gas which can mediate long-range spin interactions to simulate
We consider a one-dimensional trapped spin-1 Bose gas and numerically explore families of its solitonic solutions, namely antidark-dark-antidark (ADDAD), as well as dark-antidark-dark (DADD) solitary waves. Their existence and stability properties ar