ترغب بنشر مسار تعليمي؟ اضغط هنا

The Verlinde formula for Higgs bundles

162   0   0.0 ( 0 )
 نشر من قبل Du Pei
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and prove the Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. This generalizes the equivariant Verlinde formula for the case of $SU(n)$ proposed previously by the second and third author. We further establish a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks. Finally, we prove that these dimensions form a one-parameter family of $1+1$-dimensional TQFT, uniquely classified by the complex Verlinde algebra, which is a one-parameter family of Frobenius algebras. We construct this one-parameter family of Frobenius algebras as a deformation of the classical Verlinde algebra for $G$.

قيم البحث

اقرأ أيضاً

We conjecture a formula for the virtual elliptic genera of moduli spaces of rank 2 sheaves on minimal surfaces $S$ of general type. We express our conjecture in terms of the Igusa cusp form $chi_{10}$ and Borcherds type lifts of three quasi-Jacobi fo rms which are all related to the Weierstrass elliptic function. We also conjecture that the generating function of virtual cobordism classes of these moduli spaces depends only on $chi(mathcal{O}_S)$ and $K_S^2$ via two universal functions, one of which is determined by the cobordism classes of Hilbert schemes of points on $K3$. We present generalizations of these conjectures, e.g. to arbitrary surfaces with $p_g>0$ and $b_1=0$. We use a result of J. Shen to express the virtual cobordism class in terms of descendent Donaldson invariants. In a prequel we used T. Mochizukis formula, universality, and toric calculations to compute such Donaldson invariants in the setting of virtual $chi_y$-genera. Similar techniques allow us to verify our new conjectures in many cases.
Geometric structures on manifolds became popular when Thurston used them in his work on the geometrization conjecture. They were studied by many people and they play an important role in higher Teichmuller theory. Geometric structures on a manifold a re closely related with representations of the fundamental group and with flat bundles. Higgs bundles can be very useful in describing flat bundles explicitly, via solutions of Hitchins equations. Baraglia has shown in his Ph.D. Thesis that Higgs bundles can also be used to construct geometric structures in some interesting cases. In this paper, we will explain the main ideas behind this theory and we will survey some recent results in this direction, which are joint work with Qiongling Li.
In this paper we give a new proof of the ELSV formula. First, we refine an argument of Okounkov and Pandharipande in order to prove (quasi-)polynomiality of Hurwitz numbers without using the ELSV formula (the only way to do that before used the ELSV formula). Then, using this polynomiality we give a new proof of the Bouchard-Mari~no conjecture. After that, using the correspondence between the Givental group action and the topological recursion coming from matrix models, we prove the equivalence of the Bouchard-Mari~no conjecture and the ELSV formula (it is a refinement of an argument by Eynard).
We find an agreement of equivariant indices of semi-classical homomorphisms between pairwise mirror branes in the GL(2) Higgs moduli space on a Riemann surface. On one side we have the components of the Lagrangian brane of U(1,1) Higgs bundles whose mirror was proposed by Nigel Hitchin to be certain even exterior powers of the hyperholomorphic Dirac bundle on the SL(2) Higgs moduli space. The agreement arises from a mysterious functional equation. This gives strong computational evidence for Hitchins proposal.
This is a sequel to Kodaira-Saito vanishing via Higgs bundles in positive characteristic (arXiv:1611.09880). However, unlike the previous paper, all the arguments here are in characteristic zero. The main result is a Kodaira vanishing theorem for sem istable parabolic Higgs bundles with trivial parabolic Chern classes. This implies a general semipositivity theorem. This also implies a Kodaira-Saito vanishing theorem for complex variations of Hodge structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا