ﻻ يوجد ملخص باللغة العربية
The spin resonance peak in the iron-based superconductors is observed in inelastic neutron scattering experiments and agrees well with predicted results for the extended s-wave ($s_pm$) gap symmetry. On the basis of four-band and three-orbital tight binding models we study the effect of nonmagnetic disorder on the resonance peak. Spin susceptibility is calculated in the random phase approximation with the renormalization of the quasiparticle self-energy due to the impurity scattering in the static Born approximation. We find that the spin resonance becomes broader with the increase of disorder and its energy shifts to higher frequencies. For the same amount of disorder the spin response in the $s_pm$ state is still distinct from that of the $s_{++}$ state.
We study the spin resonance in superconducting state of iron-based materials within multiband models with two unequal gaps, $Delta_L$ and $Delta_S$, on different Fermi surface pockets. We show that due to the indirect nature of the gap entering the s
We consider the spin response within the five-orbital model for iron-based superconductors and study two cases: equal and unequal gaps in different bands. In the first case, the spin resonance peak in the superconducting state appears below the chara
We study the spin resonance peak in recently discovered iron-based superconductors. The resonance peak observed in inelastic neutron scattering experiments agrees well with predicted results for the extended $s$-wave ($s_pm$) gap symmetry. Recent neu
We study the effect of strong spin-orbit coupling (SOC) on bound states induced by impurities in superconductors. The presence of spin-orbit coupling breaks the $mathbb{SU}(2)$-spin symmetry and causes the superconducting order parameter to have gene
We show that only a few percentage of Sn doping at the Ba site on BaFe$_2$As$_2$, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d$_{xy}$ band of Fe undergoes electron like transition due to 4% Sn doping. Li