ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Quantum Digital Signature over 102 km

80   0   0.0 ( 0 )
 نشر من قبل Hua-Lei Yin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum digital signature (QDS) is an approach to guarantee the nonrepudiation, unforgeability and transferability of a signature with the information-theoretical security. All previous experimental realizations of QDS relied on an unrealistic assumption of secure channels and the longest distance is only several kilometers. Here, we have experimentally demonstrated a recently proposed QDS protocol without any secure channel. Exploiting the decoy state modulation, we have successfully signed one bit message through up to 102 km optical fiber. Furthermore, we continuously run the system to sign the longer message USTC with 32 bit at the distance of 51 km. Our results pave the way towards the practical application of QDS.

قيم البحث

اقرأ أيضاً

Quantum digital signature (QDS) guarantee the unforgeability, nonrepudiation and transferability of signature messages with information-theoretical security, and hence has attracted much attention recently. However, most previous implementations of Q DS showed relatively low signature rates or/and short transmission distance. In this paper, we report a proof-of-principle phase-encoding QDS demonstration using only one decoy state. Firstly, such method avoids the modulation of vacuum state, thus reducing experimental complexity and random number consumption. Moreover, incorporating with low-loss asymmetric Mach-Zehnder interferometers and real-time polarization calibration technique, we have successfully achieved higher signature rate, e.g., 0.98 bit/s at 103 km, and to date a record-breaking transmission distance over 280-km installed fibers. Our work represents a significant step towards real-world applications of QDS.
The archetypal quantum interferometry experiment yields an interference pattern that results from the indistinguishability of two spatiotemporal paths available to a photon or to a pair of entangled photons. A fundamental challenge in quantum interfe rometry is to perform such experiments with a higher number of paths, and over large distances. In particular, the distribution of such highly entangled states in long-haul optical fibers is one of the core concepts behind quantum information networks. We demonstrate that using indistinguishable frequency paths instead of spatiotemporal ones allows for robust, high-dimensional quantum interferometry in optical fibers. In our system, twin-photons from an Einstein-Podolsky-Rosen (EPR) pair are offered up to 9 frequency paths after propagation in long-haul optical fibers, and we show that the multi-path quantum interference patterns can be faithfully restored after the photons travel a total distance of up to 60 km.
Quantum cryptography allows confidential information to be communicated between two parties, with secrecy guaranteed by the laws of nature alone. However, upholding guaranteed secrecy over quantum communication networks poses a further challenge, as classical receive-and-resend routing nodes can only be used conditional of trust by the communicating parties. Here, we demonstrate the operation of a quantum relay over 1 km of optical fiber, which teleports a sequence of photonic quantum bits to a receiver by utilizing entangled photons emitted by a semiconductor LED. The average relay fidelity of the link is 0.90+/-0.03, exceeding the classical bound of 0.75 for the set of states used, and sufficiently high to allow error correction. The fundamentally low multi-photon emission statistics and the integration potential of the source present an appealing platform for future quantum networks.
A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distri bution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.
We propose and experimentally implement a novel reconfigurable quantum key distribution (QKD) scheme, where the users can switch in real time between conventional QKD and the recently-introduced measurement-device-independent (MDI) QKD. Through this setup, we demonstrate the distribution of quantum keys between three remote parties connected by only two quantum channels, a previously unattempted task. Moreover, as a prominent application, we extract the first quantum digital signature (QDS) rates from a network that uses a measurement-device-independent link. In so doing, we introduce an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and increasing the final QDS rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا