ﻻ يوجد ملخص باللغة العربية
Two sets of light curves in $V$ $R_c$ $I_c$ bands for a newly discovered binary system UCAC4 436-062932 are obtained and analyzed using the Wilson-Devinney (W-D) code. The two sets of light curves get almost consistent results. The determined mass ratio is about $q = 2.7$ and the less massive component is nearly $250K$ hotter than the more massive one. The solutions conclude that UCAC4 436-062932 is a W-subtype shallow contact (with a contact degree of $f = 20,%$) binary system. Since the OConnell effect appears on one set of the light curves, theories proposed to explain the effect are discussed. We assume that spot model may be the more plausible one to the OConnell effect appeared on the asymmetric light curves of the binary system UCAC4 436-062932. Therefore, we add a cool spot on the surface of the more massive star (component with lower effective temperature) and get a quite approving results for the light curve fitting. It will provide evidence to support the spot model in the explanatory mechanism of OConnell effect.
Multi-color light curves of V1197 Her were obtained with the 2.4 meter optical telescope at Thai National Observatory and the Wilson-Devinney (W-D) program is used to model the observational light curves. The photometric solutions reveal that V1197 H
Two sets of multiple-color ($B, V, R_c, I_c$) light curves of PZ UMa were observed in dependently with the 2.4 meter telescope at the Thai National Observatory and the 1 meter telescope at Yunnan Observatories. The light curves were analyzed with the
The first photometric analysis of V811 Cep was carried out. The first complete light curves of V, R and I bands are given. The analysis was carried out by Wilson-Devinney (W-D) program, and the results show that V811 Cep is a median-contact binary ($
The first four-color light curves of V868 Mon in the $B$ $V$ $R_c$ and $I_c$ bands are presented and analyzed by using the Wilson-Devinney method of the 2013 version. It is discovered that V868 Mon is an A-subtype contact binary (f=$58.9,%$) with a l
Orbital period and multi-color light curves investigation of OW Leo are presented for the first time. The orbital period of OW Leo is corrected from $P = 0.325545$ days to $P = 0.32554052$ days in our work, and the observational data from the All-Sky