ﻻ يوجد ملخص باللغة العربية
We present a systematic study of the ac susceptibility of the chiral magnet Fe$_{1-x}$Co$_x$Si with $x$ = 0.30 covering four orders of magnitude in frequencies from 0.1 Hz to 1 kHz, with particular emphasis to the pronounced history dependence. Characteristic relaxation times ranging from a few milliseconds to tens of seconds are observed around the skyrmion lattice A-phase, the helical-to-conical transition and in a region above $T_C$. The distribution of relaxation frequencies around the A-phase is broad, asymmetric and originates from multiple coexisting relaxation processes. The pronounced dependence of the magnetic phase diagram on the magnetic history and cooling rates as well as the asymmetric frequency dependence and slow dynamics suggest more complicated physical phenomena in Fe$_{0.7}$Co$_{0.3}$Si than in other chiral magnets.
We present a comprehensive and systematic magnetization and ac susceptibility study of Mn$_{1-x}$Fe$_{x}$Si over an extensive range of ten Fe concentrations between $x$ = 0 - 0.32. With increasing Fe substitution, the critical temperature decreases b
Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe$_{1-x}$Co$_x$Si with $x$=0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase di
Monosilicides of 3d-metals frequently show a chiral magnetic ordering with the absolute configuration defined by the chirality of the crystal structure and the sign of the Dzyaloshinskii-Moriya interaction (DMI). Structural and magnetic chiralities a
We study the low-temperature electrical and thermal conductivity of CoSi and Co$_{1-x}$M$_x$Si alloys (M = Fe, Ni; $x leq$ 0.06). Measurements show that the low-temperature electrical conductivity of Co$_{1-x}$Fe$_{x}$Si alloys decreases at $x > $ 0.
The finite-temperature magnetic properties of Fe$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ alloys have been investigated. It is shown that the temperature-dependent magnetic behaviour of alloys, composed of originally magnetic and non-magnetic elements, can