ﻻ يوجد ملخص باللغة العربية
Theia is an astrometric mission proposed to ESA in 2014 for which one of the scientific objectives is detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. This objective requires the capability to measure stellar centroids at the precision of 1e-5 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 3e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The Theia consortium is operating a testbed in vacuum in order to achieve 1e-5 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the Theia spacecraft. The testbed consists of two main sub-systems. The first one produces pseudo stars: a blackbody source is fed into a large core fiber and lights-up a pinhole mask in the object plane, which is imaged by a mirror on the CCD. The second sub-system is the metrology, it projects young fringes on the CCD. The fringes are created by two single mode fibers facing the CCD and fixed on the mirror. In this paper we present the latest experiments conducted and the results obtained after a series of upgrades on the testbed was completed. The calibration system yielded the pixel positions to an accuracy estimated at 4e-4 pixel. After including the pixel position information, an astrometric accuracy of 6e-5 pixel was obtained, for a PSF motion over more than 5 pixels. In the static mode (small jitter motion of less than 1e-3 pixel), a photon noise limited precision of 3e-5 pixel was reached.
Context: Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitab
We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an i
The ARGO-YBJ experiment has been in stable data taking for 5 years at the YangBaJing Cosmic Ray Observatory (Tibet, P.R. China, 4300 m a.s.l., 606 g/cm$^2$). With a duty-cycle greater than 86% the detector collected about 5$times $10$^{11}$ events in
Thank to the stable operation at intense beam power, T2K data with neutrino-mode operation almost doubled in one year. A number of critical improvements to the oscillation analysis have been introduced and resulted in an unprecedented level of sensit
The Dafne Frascati phi factory has continously improved its performances reaching in 2002 an instantaneous luminosity of 8x10^31 cm-2 s-1. The DEAR experiment, concluded in 2002, has measured the de-excitation of kaonic atoms. The KLOE experiment, st