ﻻ يوجد ملخص باللغة العربية
In his Comment, Elsasser claims that the answer to my titular question is one, not four as I have it. He goes on to give the singular principle that supposedly captures the difference between a light-bulb and a laser: $g^{(2)}(tau=0)=1$. His claim is unconsidered and wrong, his proposed principle is impossible to apply and, when corrected, redundant (it then becomes one of the four I list already), his arguments are manifestly misdirected. My paper stands as is.
Quantum optics did not, and could not, flourish without the laser. The present paper is not about the principles of laser construction, still less a history of how the laser was invented. Rather, it addresses the question: what are the fundamental fe
We consider the effect of introducing a small number of non-aligning agents in a well-formed flock. To this end, we modify a minimal model of active Brownian particles with purely repulsive (excluded volume) forces to introduce an alignment interacti
A $D$-dimensional Markovian open quantum system will undergo quantum jumps between pure states, if we can monitor the bath to which it is coupled with sufficient precision. In general these jumps, plus the between-jump evolution, create a trajectory
We present the first numerical simulations that self-consistently follow the formation of dense molecular clouds in colliding flows. Our calculations include a time-dependent model for the H2 and CO chemistry that runs alongside a detailed treatment
We study transient effects in a setup, where the quantum dot (QD) is abruptly sandwiched between the metallic and superconducting leads. Focusing on the proximity-induced electron pairing, manifested by the in-gap bound states, we determine character