ﻻ يوجد ملخص باللغة العربية
Markerless motion capture algorithms require a 3D body with properly personalized skeleton dimension and/or body shape and appearance to successfully track a person. Unfortunately, many tracking methods consider model personalization a different problem and use manual or semi-automatic model initialization, which greatly reduces applicability. In this paper, we propose a fully automatic algorithm that jointly creates a rigged actor model commonly used for animation - skeleton, volumetric shape, appearance, and optionally a body surface - and estimates the actors motion from multi-view video input only. The approach is rigorously designed to work on footage of general outdoor scenes recorded with very few cameras and without background subtraction. Our method uses a new image formation model with analytic visibility and analytically differentiable alignment energy. For reconstruction, 3D body shape is approximated as Gaussian density field. For pose and shape estimation, we minimize a new edge-based alignment energy inspired by volume raycasting in an absorbing medium. We further propose a new statistical human body model that represents the body surface, volumetric Gaussian density, as well as variability in skeleton shape. Given any multi-view sequence, our method jointly optimizes the pose and shape parameters of this model fully automatically in a spatiotemporal way.
Human pose and shape estimation from RGB images is a highly sought after alternative to marker-based motion capture, which is laborious, requires expensive equipment, and constrains capture to laboratory environments. Monocular vision-based algorithm
We present a novel method for monocular hand shape and pose estimation at unprecedented runtime performance of 100fps and at state-of-the-art accuracy. This is enabled by a new learning based architecture designed such that it can make use of all the
We propose POse-guided SElective Fusion (POSEFusion), a single-view human volumetric capture method that leverages tracking-based methods and tracking-free inference to achieve high-fidelity and dynamic 3D reconstruction. By contributing a novel reco
Human volumetric capture is a long-standing topic in computer vision and computer graphics. Although high-quality results can be achieved using sophisticated off-line systems, real-time human volumetric capture of complex scenarios, especially using
In this paper, we present TightCap, a data-driven scheme to capture both the human shape and dressed garments accurately with only a single 3D human scan, which enables numerous applications such as virtual try-on, biometrics and body evaluation. To