ﻻ يوجد ملخص باللغة العربية
This article presents a new semi-automatic method for charge and mass identification in two-dimensional matrices. The proposed algorithm is based on the matrixs properties and uses as little information as possible on the global form of the identification lines, making it applicable to a large variety of matrices, including Particular attention has been paid to the implementation in a suitable graphical environment, so that only two mouse-clicks are required from the user to calculate all initialization parameters. Example applications to recent data from both INDRA and FAZIA telescopes are presented.
An upgraded GARFIELD + Ring Counter (RCo) apparatus is presented with improved performances as far as electronics and detectors are concerned. On one side fast sampling digital read out has been extended to all detectors, allowing for an important si
The CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) prototype using Glass Resistive Plate Chambers as a sensitive medium is the first technological prototype of a family of high-granularity calorimeters developed by the CALICE collaboration to equi
The process $e^{+}e^{-} to qbar{q}$ plays an important role in electroweak precision measurements. We are studying this process with ILD full simulation. The key for the reconstruction of the quark pair final states is quark charge identification (ID
We present a straightforward method for particle identification and background rejection in $^3$He proportional counters for use in neutron detection. By measuring the risetime and pulse height of the preamplifier signals, one may define a region in
Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors.