ﻻ يوجد ملخص باللغة العربية
The loss of ultracold trapped atoms due to deeply inelastic reactions has previously been taken into account in effective field theories for low-energy atoms by adding local anti-Hermitian terms to the effective Hamiltonian. Here we show that when multi-atom systems are considered, an additional modification is required in the equation governing the density matrix. We define an effective density matrix by tracing over the states containing high-momentum atoms produced by deeply inelastic reactions. We show that it satisfies a Lindblad equation, with local Lindblad operators determined by the local anti-Hermitian terms in the effective Hamiltonian. We use the Lindblad equation to derive the universal relation for the two-atom inelastic loss rate for fermions with two spin states and the universal relation for the three-atom inelastic loss rate for identical bosons.
Radiofrequency (RF)-dressed potentials are a promising technique for manipulating atomic mixtures, but so far little work has been undertaken to understand the collisions of atoms held within these traps. In this work, we dress a mixture of 85Rb and
We review the derivation of the effective Dirac equation for ultracold atoms in one-dimensional bichromatic optical lattices, following the proposal by Witthaut et al. Phys. Rev. A 84, 033601 (2011). We discuss how such a derivation - based on a suit
We present two independent calculations of the tight-binding parameters for a specific realization of the Haldane model with ultracold atoms. The tunneling coefficients up to next-to-nearest neighbors are computed ab-initio by using the maximally loc
We consider a system of ultracold atoms in an optical lattice as a quantum simulator for electron-positron pair production in quantum electrodynamics (QED). For a setup in one spatial dimension, we investigate the nonequilibrium phenomenon of pair pr
We discuss the amplification of loop corrections in quantum many-body systems through dynamical instabilities. As an example, we investigate both analytically and numerically a two-component ultracold atom system in one spatial dimension. The model f