ﻻ يوجد ملخص باللغة العربية
Dissipative Kerr solitons have recently been generated in optical microresonators, enabling ultrashort optical pulses at microwave repetition rates, that constitute coherent and numerically predictable Kerr frequency combs. However, the seeding and excitation of the temporal solitons is associated with changes in the intracavity power, that can lead to large thermal resonance shifts during the excitation process and render the soliton states in most commonly used resonator platforms short lived. Here we describe a power kicking method to overcome this instability by modulating the power of the pump laser. A fast modulation triggers the soliton formation, while a slow adjustment of the power compensates the thermal effect during the excitation laser scan. With this method also initially very short-lived (100ns) soliton states , as encountered in SiN integrated photonic microresonators, can be brought into a steady state in contrast to techniques reported earlier which relied on an adjustment of the laser scan speed only. Once the soliton state is in a steady state it can persist for hours and is thermally self-locked.
This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this cl
We theoretically study the nature of parametrically driven dissipative Kerr soliton (PD-DKS) in a doubly resonant degenerate micro-optical parametric oscillator (DR-D{mu}OPO) with the cooperation of c{hi}(2) and c{hi}(3) nonlinearities. Lifting the a
Kerr soliton frequency comb generation in monolithic microresonators recently attracted great interests as it enables chip-scale few-cycle pulse generation at microwave rates with smooth octave-spanning spectra for self-referencing. Such versatile pl
Dissipative solitons are self-localized structures resulting from a double balance between dispersion and nonlinearity as well as dissipation and a driving force. They occur in a wide variety of fields ranging from optics, hydrodynamics to chemistry
Solitons are shape preserving waveforms that are ubiquitous across nonlinear dynamical systems and fall into two separate classes, that of bright solitons, formed in the anomalous group velocity dispersion regime, and `dark solitons in the normal dis