ﻻ يوجد ملخص باللغة العربية
For Riesz-like kernels $K(x,y)=f(|x-y|)$ on $Atimes A$, where $A$ is a compact $d$-regular set $Asubset mathbb{R}^p$, we prove a minimum principle for potentials $U_K^mu=int K(x,y)dmu(x)$, where $mu$ is a Borel measure supported on $A$. Setting $P_K(mu)=inf_{yin A}U^mu(y)$, the $K$-polarization of $mu$, the principle is used to show that if ${ u_N}$ is a sequence of measures on $A$ that converges in the weak-star sense to the measure $ u$, then $P_K( u_N)to P_K( u)$ as $Nto infty$. The continuous Chebyshev (polarization) problem concerns maximizing $P_K(mu)$ over all probability measures $mu$ supported on $A$, while the $N$-point discrete Chebyshev problem maximizes $P_K(mu)$ only over normalized counting measures for $N$-point multisets on $A$. We prove for such kernels and sets $A$, that if ${ u_N}$ is a sequence of $N$-point measures solving the discrete problem, then every weak-star limit measure of $ u_N$ as $N to infty$ is a solution to the continuous problem.
Grovers algorithm is one of the most famous algorithms which explicitly demonstrates how the quantum nature can be utilized to accelerate the searching process. In this work, Grovers quantum search problem is mapped to a time-optimal control problem.
Minimum Riesz energy problems in the presence of an external field are analyzed for a condenser with touching plates. We obtain sufficient and/or necessary conditions for the solvability of these problems in both the unconstrained and the constrained
Continuum kinetic theories provide an important tool for the analysis and simulation of particle suspensions. When those particles are anisotropic, the addition of a particle orientation vector to the kinetic description yields a $2d-1$ dimensional t
We study the constrained minimum energy problem with an external field relative to the $alpha$-Riesz kernel $|x-y|^{alpha-n}$ of order $alphain(0,n)$ for a generalized condenser $mathbf A=(A_i)_{iin I}$ in $mathbb R^n$, $ngeqslant 3$, whose oppositel
In this note we state (with minor corrections) and give an alternative proof of a very general hypergeometric transformation formula due to Slater. As an application, we obtain a new hypergeometric transformation formula for a ${}_5F_4(-1)$ series wi