ﻻ يوجد ملخص باللغة العربية
Sentence ordering is a general and critical task for natural language generation applications. Previous works have focused on improving its performance in an external, downstream task, such as multi-document summarization. Given its importance, we propose to study it as an isolated task. We collect a large corpus of academic texts, and derive a data driven approach to learn pairwise ordering of sentences, and validate the efficacy with extensive experiments. Source codes and dataset of this paper will be made publicly available.
Sentence ordering aims at arranging a list of sentences in the correct order. Based on the observation that sentence order at different distances may rely on different types of information, we devise a new approach based on multi-granular orders betw
Sentence ordering aims to arrange the sentences of a given text in the correct order. Recent work frames it as a ranking problem and applies deep neural networks to it. In this work, we propose a new method, named BERT4SO, by fine-tuning BERT for sen
Modeling the structure of coherent texts is a key NLP problem. The task of coherently organizing a given set of sentences has been commonly used to build and evaluate models that understand such structure. We propose an end-to-end unsupervised deep l
Sentence ordering is one of important tasks in NLP. Previous works mainly focused on improving its performance by using pair-wise strategy. However, it is nontrivial for pair-wise models to incorporate the contextual sentence information. In addition
Sentence order prediction is the task of finding the correct order of sentences in a randomly ordered document. Correctly ordering the sentences requires an understanding of coherence with respect to the chronological sequence of events described in