ﻻ يوجد ملخص باللغة العربية
T CrB is a symbiotic recurrent nova known to exhibit active phases, characterised by apparent increases in the hot component temperature and the appearance of flickering, i.e. changes in the observed flux on the time-scale of minutes. Historical UV observations have ruled out orbital variability as an explanation for flickering and instead suggest flickering is caused by variable mass transfer. We have analysed optical and X-ray observations to investigate the nature of the flickering as well as the active phases in T CrB. The spectroscopic and photometric observations confirm that the active phases follow two periods of ~1000d and ~5000d. Flickering in the X-rays is detected and follows an amplitude-flux relationship similar to that observed in the optical. The flickering is most prominent at harder X-ray energies, suggesting that it originates in the boundary layer between the accretion disc and the white dwarf. The X-ray radiation from the boundary layer is then reprocessed by a thick accretion disc or a nebula into UV radiation. A more detailed understanding of flickering would benefit from long-term simultaneous X-ray and optical monitoring of the phenomena in symbiotic recurrent novae and related systems such as Z And type symbiotic stars.
We present an analysis of the XMM-Newton observations of the symbiotic recurrent nova T CrB, obtained during its active phase that started in 2015. The XMM-Newton spectra of T CrB have two prominent components: a soft one (0.2 - 0.6 keV), well repres
We analyze $V$-band photometry of the aperiodic variability in T CrB. By applying a simple idea of angular momentum transport in the accretion disc, we have developed a method to simulate the statistical distribution of flare durations with the assum
Classical nova outburst has been suggested for a number of extragalactic symbiotic stars, but in none of the systems has it been proven. In this work we study the nature of one of these systems, LMC S154. We gathered archival photometric observations
We report observations of the flickering variability of the symbiotic recurrent nova RS~Oph at quiescence in five bands ($UBVRI$). We find evidence of a correlation between the peak-to-peak flickering amplitude ($Delta F$) and the average flux of the
Estimates of the accretion rate in symbiotic recurrent novae (RNe) often fall short of theoretical expectations by orders of magnitude. This apparent discrepancy can be resolved if the accumulation of mass by the white dwarf (WD) is highly sporadic,