ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground state oxygen holes and the metal-insulator transition in the negative charge transfer rare-earth nickelates

183   0   0.0 ( 0 )
 نشر من قبل Valentina Bisogni
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The metal-insulator transitions and the intriguing physical properties of rare-earth perovskite nickelates have attracted considerable attention in recent years. Nonetheless, a complete understanding of these materials remains elusive. Here, taking a NdNiO3 thin film as a representative example, we utilize a combination of x-ray absorption and resonant inelastic x-ray scattering (RIXS) spectroscopies to resolve important aspects of the complex electronic structure of the rare-earth nickelates. The unusual coexistence of bound and continuum excitations observed in the RIXS spectra provides strong evidence for the abundance of oxygen 2p holes in the ground state of these materials. Using cluster calculations and Anderson impurity model interpretation, we show that these distinct spectral signatures arise from a Ni 3d8 configuration along with holes in the oxygen 2p valence band, confirming suggestions that these materials do not obey a conventional positive charge-transfer picture, but instead exhibit a negative charge-transfer energy, in line with recent models interpreting the metal to insulator transition in terms of bond disproportionation.

قيم البحث

اقرأ أيضاً

We study a model for the metal-insulator (MI) transition in the rare-earth nickelates RNiO$_3$, based upon a negative charge transfer energy and coupling to a rock-salt like lattice distortion of the NiO$_6$ octahedra. Using exact diagonalization and the Hartree-Fock approximation we demonstrate that electrons couple strongly to these distortions. For small distortions the system is metallic, with ground state of predominantly $d^8ligand$ character, where $ligand$ denotes a ligand hole. For sufficiently large distortions ($delta d_{rm Ni-O} sim 0.05 - 0.10AA$), however, a gap opens at the Fermi energy as the system enters a periodically distorted state alternating along the three crystallographic axes, with $(d^8ligand^2)_{S=0}(d^8)_{S=1}$ character, where $S$ is the total spin. Thus the MI transition may be viewed as being driven by an internal volume collapse where the NiO$_6$ octahedra with two ligand holes shrink around their central Ni, while the remaining octahedra expand accordingly, resulting in the ($1/2,1/2,1/2$) superstructure observed in x-ray diffraction in the insulating phase. This insulating state is an example of a new type of charge ordering achieved without any actual movement of the charge.
For most metals, increasing temperature (T) or disorder will quicken electron scattering. This hypothesis informs the Drude model of electronic conductivity. However, for so-called bad metals this predicts scattering times so short as to conflict wit h Heisenbergs uncertainty principle. Here we introduce the rare-earth nickelates (RNiO_3, R = rare earth) as a class of bad metals. We study SmNiO_3 thin films using infrared spectroscopy while varying T and disorder. We show that the interaction between lattice distortions and Ni-O bond covalence explains both the bad metal conduction and the insulator-metal transition in the nickelates by shifting spectral weight over the large energy scale established by the Ni-O orbital interaction, thus enabling very low sigma while preserving the Drude model and without violating the uncertainty principle.
We show that charge ordering (more precisely, two-sublattice bond disproportionation) in the rare earth nickelate perovskites is intimately related to a negative charge transfer energy. By adding an additional potential on the Ni d states we are able to vary the charge tranfer energy and compute relaxed structures within an ab-initio framework. We show that the difference in Ni-O bond lengths and the value of the ordered state magnetic moment correlate with the charge transfer energy and that the transition to the bond-disproportionated state occurs when the effective charge transfer energy becomes negative.
64 - I. Leonov 2021
We compute the electronic structure, spin and charge state of Fe ions, and structural phase stability of paramagnetic CaFeO$_3$ under pressure using a fully self-consistent in charge density DFT+dynamical mean-field theory method. We show that at amb ient pressure CaFeO$_3$ is a negative charge-transfer insulator characterized by strong localization of the Fe $3d$ electrons. It crystallizes in the monoclinic $P2_1/n$ crystal structure with a cooperative breathing mode distortion of the lattice. While the Fe $3d$ Wannier occupations and local moments are consistent with robust charge disproportionation of Fe ions in the insulating $P2_1/n$ phase, the physical charge density difference around the structurally distinct Fe A and Fe B ions with the ``contracted and ``expanded oxygen octahedra, respectively, is rather weak, $sim$0.04. This implies the importance of the Fe $3d$ and O $2p$ negative charge transfer and supports the formation of a bond-disproportionated state characterized by the Fe A $3d^{5-delta}underline{L}^{2-delta}$ and Fe B $3d^5$ valence configurations with $delta ll 1$, in agreement with strong hybridization between the Fe $3d$ and O $2p$ states. Upon compression above $sim$41 GPa CaFeO$_3$ undergoes the insulator-to-metal phase transition (IMT) which is accompanied by a structural transformation into the orthorhombic $Pbnm$ phase. The phase transition is accompanied by suppression of the cooperative breathing mode distortion of the lattice and, hence, results in the melting of bond disproportionation of the Fe ions. Our analysis suggests that the IMT transition is associated with orbital-dependent delocalization of the Fe $3d$ electrons and leads to a remarkable collapse of the local magnetic moments. Our results imply the crucial importance of the interplay of electronic correlations and structural effects to explain the properties of CaFeO$_3$.
Rare-earth nickelates exhibit a metal-insulator transition accompanied by a structural distortion that breaks the symmetry between formerly equivalent Ni sites. The quantitative theoretical description of this coupled electronic-structural instabilit y is extremely challenging. Here, we address this issue by simultaneously taking into account both structural and electronic degrees of freedom using a charge self-consistent combination of density functional theory and dynamical mean-field theory, together with screened interaction parameters obtained from the constrained random phase approximation. Our total energy calculations show that the coupling to an electronic instability towards a charge disproportionated insulating state is crucial to stabilize the structural distortion, leading to a clear first order character of the coupled transition. The decreasing octahedral rotations across the series suppress this electronic instability and simultaneously increase the screening of the effective Coulomb interaction, thus weakening the correlation effects responsible for the metal-insulator transition. Our approach allows to obtain accurate values for the structural distortion and thus facilitates a comprehensive understanding, both qualitatively and quantitatively, of the complex interplay between structural properties and electronic correlation effects across the nickelate series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا