ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation and Polarization Signatures of 3D Multi-zone Time-dependent Hadronic Blazar Model

110   0   0.0 ( 0 )
 نشر من قبل Haocheng Zhang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Haocheng Zhang




اسأل ChatGPT حول البحث

We present a newly developed time-dependent three-dimensional multi-zone hadronic blazar emission model. By coupling a Fokker-Planck based lepto-hadronic particle evolution code 3DHad with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic $gamma$-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light crossing time scale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.



قيم البحث

اقرأ أيضاً

We present a time-dependent approach to the one-zone hadronic model in the case where the photon spectrum is produced by ultrarelativistic protons interacting with soft photons that are produced from protons and low magnetic fields. Assuming that pro tons are injected at a certain rate in a homogeneous spherical volume containing a magnetic field, the evolution of the system can be described by five coupled kinetic equations, for protons, electrons, photons, neutrons, and neutrinos. Photopair and photopion interactions are modelled using the results of Monte-Carlo simulations and, in particular from the SOPHIA code for the latter. The coupling of energy losses and injection introduces a self-consistency in our approach and allows the study of the comparative relevancy of processes at various conditions, the efficiency of the conversion of proton luminosity to radiation, the resulting neutrino spectra, and the effects of time variability on proton injection, among other topics. We present some characteristic examples of the temporal behaviour of the system and show that this can be very different from the one exhibited by leptonic models. Furthermore, we argue that, contrary to the wide-held belief, there are parameter regimes where the hadronic models can become quite efficient. However, to keep the free parameters at a minimum and facilitate an in-depth study of the system, we have only concentrated on the case where protons are injected; i.e., we did not consider the effects of a co-accelerated leptonic component.
289 - Rui Xue , Ruo-Yu Liu , Ze-Rui Wang 2020
In this work, we investigate the 2014-2015 neutrino flare associated with the blazar TXS 0506+056 and a recently discovered muon neutrino event IceCube-200107A in spatial coincidence with the blazar 4FGL J0955.1+3551, under the framework of a two-zon e radiation model of blazars where an inner/outer blob close to/far from the supermassive black hole are invoked. An interesting feature that the two sources share in common is that no evidence of GeV gamma-ray activity is found during the neutrino detection period, probably implying a large opacity for GeV gamma rays in the neutrino production region. In our model, continuous particle acceleration/injection takes place in the inner blob at the jet base, where the hot X-ray corona of the supermassive black hole provides target photon fields for efficient neutrino production and strong GeV gamma-ray absorption. We show that this model can self-consistently interpret the neutrino emission from both two blazars in a large parameter space. In the meantime, the dissipation processes in outer blob are responsible for the simultaneous multi-wavelength emission of both sources. In agreement with previous studies of TXS 0506+056 and, an intense MeV emission from the induced electromagnetic cascade in the inner blob is robustly expected to accompany the neutrino flare in our model could be used to test the model with the next-generation MeV gamma-ray detector in the future.
We describe the time-dependent radiation transfer in blazar jets, within the internal shock model. We assume that the central engine, which consists of a black hole and an accretion disk, spews out relativistic shells of plasma with different velocit y, mass, and energy. We consider a single inelastic collision between a faster (inner) and a slower (outer) moving shell. We study the dynamics of the collision and evaluate the subsequent emission of radiation via the synchrotron and synchrotron self Compton (SSC) processes after the interaction between the two shells has begun. The collision results in the formation of a forward shock (FS) and a reverse shock (RS) that convert the ordered bulk kinetic energy of the shells into magnetic field energy and accelerate the particles, which then radiate. We assume a cylindrical geometry for the emission region of the jet. We treat the self-consistent radiative transfer by taking into account the inhomogeneity in the photon density throughout the region. In this paper, we focus on understanding the effects of varying relevant input parameters on the simulated spectral energy distribution (SED) and spectral variability patterns.
93 - Alan P. Marscher 2013
The author presents a model for variability of the flux and polarization of blazars in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical shock. The shock compresses the plasma and accelerates electrons to en ergies up to gamma(max) > 1E4 times their rest-mass energy, with the value of gamma(max) determined by the direction of the magnetic field relative to the shock front. The turbulence is approximated in a computer code as many cells, each with a uniform magnetic field whose direction is selected randomly. The density of high-energy electrons in the plasma changes randomly with time in a manner consistent with the power spectral density of flux variations derived from observations of blazars. The variations in flux and polarization are therefore caused by continuous noise processes rather than by singular events such as explosive injection of energy at the base of the jet. Sample simulations illustrate the behavior of flux and linear polarization versus time that such a model produces. The variations in gamma-ray flux generated by the code are often, but not always, correlated with those at lower frequencies, and many of the flares are sharply peaked. The mean degree of polarization of synchrotron radiation is higher and its time-scale of variability shorter toward higher frequencies, while the polarization electric vector sometimes randomly executes apparent rotations. The slope of the spectral energy distribution exhibits sharper breaks than can arise solely from energy losses. All of these results correspond to properties observed in blazars.
We study temporal variability of radiation driven winds using one dimensional, time dependent simulations and an extension of the classic theory of line driven winds developed by Castor Abbott and Klein. We drive the wind with a sinusoidally varying radiation field and find that after a relaxation time, determined by the propagation time for waves to move out of the acceleration zone of the wind, the solution settles into a periodic state. Winds driven at frequencies much higher than the dynamical frequency behave like stationary winds with time averaged radiation flux whereas winds driven at much lower frequencies oscillate between the high and low flux stationary states. Most interestingly, we find a resonance frequency near the dynamical frequency which results in velocity being enhanced or suppressed by a factor comparable to the amplitude of the flux variation. Whether the velocity is enhanced or suppressed depends on the relative phase between the radiation and the dynamical variables. These results suggest that a time-varying radiation source can induce density and velocity perturbations in the acceleration zones of line driven winds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا