ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Contribution of Active Galactic Nuclei to the High-Redshift Metagalactic Ionizing Background

135   0   0.0 ( 0 )
 نشر من قبل Anson D'Aloisio
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the claimed detection of a large population of faint active galactic nuclei (AGN) at high redshift, recent studies have proposed models in which AGN contribute significantly to the z > 4 H I ionizing background. In some models, AGN are even the chief sources of reionization. If correct, these models would make necessary a complete revision to the standard view that galaxies dominated the high-redshift ionizing background. It has been suggested that AGN-dominated models can better account for two recent observations that appear to be in conflict with the standard view: (1) large opacity variations in the z ~ 5.5 H I Lyman-alpha forest, and (2) slow evolution in the mean opacity of the He II Lyman-alpha forest. Large spatial fluctuations in the ionizing background from the brightness and rarity of AGN may account for the former, while the earlier onset of He II reionization in these models may account for the latter. Here we show that models in which AGN emissions source >~ 50 % of the ionizing background generally provide a better fit to the observed H I Lyman-alpha forest opacity variations compared to standard galaxy-dominated models. However, we argue that these AGN-dominated models are in tension with constraints on the thermal history of the intergalactic medium (IGM). Under standard assumptions about the spectra of AGN, we show that the earlier onset of He II reionization heats up the IGM well above recent temperature measurements. We further argue that the slower evolution of the mean opacity of the He II Lyman-alpha forest relative to simulations may reflect deficiencies in current simulations rather than favor AGN-dominated models as has been suggested.



قيم البحث

اقرأ أيضاً

Recent observations have shown that the scatter in opacities among coeval segments of the Lyman-alpha forest increases rapidly at z > 5. In this paper, we assess whether the large scatter can be explained by fluctuations in the ionizing background in the post-reionization intergalactic medium. We find that matching the observed scatter at z ~ 5.5 requires a short spatially averaged mean free path of < 15 comoving Mpc/h, a factor of > 3 shorter than direct measurements at z ~ 5.2. We argue that such rapid evolution in the mean free path is difficult to reconcile with our measurements of the global H I photoionization rate, which stay approximately constant over the interval z ~ 4.8 - 5.5. However, we also show that measurements of the mean free path at z > 5 are likely biased towards higher values by the quasar proximity effect. This bias can reconcile the short values of the mean free path that are required to explain the large scatter in opacities. We discuss the implications of this scenario for cosmological reionization. Finally, we investigate whether other statistics applied to the z > 5 Lyman-alpha forest can shed light on the origin of the scatter. Compared to a model with a uniform ionizing background, models that successfully account for the scatter lead to enhanced power in the line-of-sight flux power spectrum on scales k < 0.1 h/Mpc. We find tentative evidence for this enhancement in observations of the high-redshift Lyman-alpha forest.
Recent results have suggested that active galactic nuclei (AGN) could provide enough photons to reionise the Universe. We assess the viability of this scenario using a semi-numerical framework for modeling reionisation, to which we add a quasar contr ibution by constructing a Quasar Halo Occupation Distribution (QHOD) based on Giallongo et al. observations. Assuming a constant QHOD, we find that an AGN-only model cannot simultaneously match observations of the optical depth $tau_e$, neutral fraction, and ionising emissivity. Such a model predicts $tau_e$ too low by $sim 2sigma$ relative to Planck constraints, and reionises the Universe at $zlesssim 5$. Arbitrarily increasing the AGN emissivity to match these results yields a strong mismatch with the observed ionising emissivity at $zsim 5$. If we instead assume a redshift-independent AGN luminosity function yielding an emissivity evolution like that assumed in Madau & Haardt model, then we can match $tau_e$ albeit with late reionisation, however such evolution is inconsistent with observations at $zsim 4-6$ and poorly motivated physically. These results arise because AGN are more biased towards massive halos than typical reionising galaxies, resulting in stronger clustering and later formation times. AGN-dominated models produce larger ionising bubbles that are reflected in $simtimes 2$ more 21cm power on all scales. A model with equal parts galaxies and AGN contribution is still (barely) consistent with observations, but could be distinguished using next-generation 21cm experiments HERA and SKA-low. We conclude that, even with recent claims of more faint AGN than previously thought, AGN are highly unlikely to dominate the ionising photon budget for reionisation.
The fraction of compact active galactic nuclei (AGNs) that exhibit interstellar scintillation (ISS) at radio wavelengths, as well as their scintillation amplitudes, have been found to decrease significantly for sources at redshifts z > 2. This can be attributed to an increase in the angular sizes of the muas-scale cores or a decrease in the flux densities of the compact muas cores relative to that of the mas-scale components with increasing redshift, possibly arising from (1) the space-time curvature of an expanding Universe, (2) AGN evolution, (3) source selection biases, (4) scatter broadening in the ionized intergalactic medium (IGM) and intervening galaxies, or (5) gravitational lensing. We examine the frequency scaling of this redshift dependence of ISS to determine its origin, using data from a dual-frequency survey of ISS of 128 sources at 0 < z < 4. We present a novel method of analysis which accounts for selection effects in the source sample. We determine that the redshift dependence of ISS is partially linked to the steepening of source spectral indices ({alpha}^8.4_4.9) with redshift, caused either by selection biases or AGN evolution, coupled with weaker ISS in the {alpha}^8.4_4.9 < -0.4 sources. Selecting only the -0.4 < {alpha}^8.4_4.9 < 0.4 sources, we find that the redshift dependence of ISS is still significant, but is not significantly steeper than the expected (1+z)^0.5 scaling of source angular sizes due to cosmological expansion for a brightness temperature and flux-limited sample of sources. We find no significant evidence for scatter broadening in the IGM, ruling it out as the main cause of the redshift dependence of ISS. We obtain an upper limit to IGM scatter broadening of < 110muas at 4.9 GHz with 99% confidence for all lines of sight, and as low as < 8muas for sight-lines to the most compact, sim 10muas sources.
The timing and duration of the reionization epoch is crucial to the emergence and evolution of structure in the universe. The relative roles that star-forming galaxies, active galactic nuclei and quasars play in contributing to the metagalactic ioniz ing background across cosmic time remains uncertain. Deep quasar counts provide insights into their role, but the potentially crucial contribution from star-formation is highly uncertain due to our poor understanding of the processes that allow ionizing radiation to escape into the intergalactic medium (IGM). The fraction of ionizing photons that escape from star-forming galaxies is a fundamental free parameter used in models to fine-tune the timing and duration of the reionization epoch that occurred somewhere between 13.4 and 12.7 Gyrs ago (redshifts between 12 > z > 6). However, direct observation of Lyman continuum (LyC) photons emitted below the rest frame ion{H}{1} ionization edge at 912 AA is increasingly improbable at redshifts z > 3, due to the steady increase of intervening Lyman limit systems towards high z. Thus UV and U-band optical bandpasses provide the only hope for direct, up close and in depth, observations of the types of environment that favor LyC escape. By quantifying the evolution over the past 11 billion years (z < 3) of the relationships between LyC escape and local and global parameters ..., we can provide definitive information on the LyC escape fraction that is so crucial to answering the question of, how did the universe come to be ionized? Here we provide estimates of the ionizing continuum flux emitted by characteristic (L_{uv}^*) star-forming galaxies as a function of look back time and escape fraction, finding that at z = 1 (7.6 Gyrs ago) L_{uv}^* galaxies with an escape fraction of 1% have a flux of 10^{-19} ergs cm^{-2} s^{-1} AA^{-1}.
We present Spitzer measurements of the aromatic (also known as PAH) features for 35 Seyfert galaxies from the revised Shapley-Ames sample and find that the relative strengths of the features differ significantly from those observed in star-forming ga laxies. Specifically, the features at 6.2, 7.7, and 8.6 micron are suppressed relative to the 11.3 micron feature in Seyferts. Furthermore, we find an anti-correlation between the L(7.7 micron)/L(11.3 micron) ratio and the strength of the rotational H2 (molecular hydrogen) emission, which traces shocked gas. This suggests that shocks suppress the short-wavelength features by modifying the structure of the aromatic molecules or destroying the smallest grains. Most Seyfert nuclei fall on the relationship between aromatic emission and [Ne II] emission for star-forming galaxies, indicating that aromatic-based estimates of the star-formation rate in AGN host galaxies are generally reasonable. For the outliers from this relationship, which have small L(7.7 micron)/L(11.3 micron) ratios and strong H2 emission, the 11.3 micron feature still provides a valid measure of the star-formation rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا