ﻻ يوجد ملخص باللغة العربية
In this position paper, we present ideas about creating a next generation framework towards an adaptive interface for data communication and visualisation systems. Our objective is to develop a system that accepts large data sets as inputs and provides user-centric, meaningful visual information to assist owners to make sense of their data collection. The proposed framework comprises four stages: (i) the knowledge base compilation, where we search and collect existing state-ofthe-art visualisation techniques per domain and user preferences; (ii) the development of the learning and inference system, where we apply artificial intelligence techniques to learn, predict and recommend new graphic interpretations (iii) results evaluation; and (iv) reinforcement and adaptation, where valid outputs are stored in our knowledge base and the system is iteratively tuned to address new demands. These stages, as well as our overall vision, limitations and possible challenges are introduced in this article. We also discuss further extensions of this framework for other knowledge discovery tasks.
Despite the fact that advertisements (ads) often include strongly emotional content, very little work has been devoted to affect recognition (AR) from ads. This work explicitly compares content-centric and user-centric ad AR methodologies, and evalua
Empirical natural language processing (NLP) systems in application domains (e.g., healthcare, finance, education) involve interoperation among multiple components, ranging from data ingestion, human annotation, to text retrieval, analysis, generation
Designing infographics can be a tedious process for non-experts and time-consuming even for professional designers. Based on the literature and a formative study, we propose a flexible framework for automated and semi-automated infographics design. T
Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still requi
We present an algorithmic and visual grouping of participants and eye-tracking metrics derived from recorded eye-tracking data. Our method utilizes two well-established visualization concepts. First, parallel coordinates are used to provide an overvi