ﻻ يوجد ملخص باللغة العربية
We present our results on the {gamma}-ray emission from interaction-powered supernovae (SNe), a recently discovered SN type that is suggested to be surrounded by a circumstellar medium (CSM) with densities 10^7-10^12~ cm^-3. Such high densities favor inelastic collisions between relativistic protons accelerated in the SN blast wave and CSM protons and the production of {gamma}-ray photons through neutral pion decays. Using a numerical code that includes synchrotron radiation, adiabatic losses due to the expansion of the source, photon-photon interactions, proton-proton collisions and proton-photon interactions, we calculate the multi-wavelength non-thermal photon emission soon after the shock breakout and follow its temporal evolution until 100-1000 days. Focusing on the {gamma}-ray emission at >100 MeV, we show that this could be detectable by the Fermi-LAT telescope for nearby (<10 Mpc) SNe with dense CSM (>10^11 cm^-3).
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. We perform the first systematic search fo
Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are predicted to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. Here we summarize the results of the first s
Supernova remnants are known to accelerate cosmic rays (CRs) on account of their non-thermal emission of radio waves, X-rays, and gamma rays. However, the ability to accelerate CRs up to PeV-energies has yet to be demonstrated. The presence of cut-of
We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at lat
We study the interaction of early-type stars with the jets of active galactic nuclei. A bow-shock will form as a consequence of the interaction of the jet with the winds of stars and particles can be accelerated up to relativistic energies in these s