ﻻ يوجد ملخص باللغة العربية
We present deep polarimetric observations at 154 MHz with the Murchison Widefield Array (MWA), covering 625 deg^2 centered on RA=0 h, Dec=-27 deg. The sensitivity available in our deep observations allows an in-band, frequency-dependent analysis of polarized structure for the first time at long wavelengths. Our analysis suggests that the polarized structures are dominated by intrinsic emission but may also have a foreground Faraday screen component. At these wavelengths, the compactness of the MWA baseline distribution provides excellent snapshot sensitivity to large-scale structure. The observations are sensitive to diffuse polarized emission at ~54 resolution with a sensitivity of 5.9 mJy beam^-1 and compact polarized sources at ~2.4 resolution with a sensitivity of 2.3 mJy beam^-1 for a subset (400 deg^2) of this field. The sensitivity allows the effect of ionospheric Faraday rotation to be spatially and temporally measured directly from the diffuse polarized background. Our observations reveal large-scale structures (~1 deg - 8 deg in extent) in linear polarization clearly detectable in ~2 minute snapshots, which would remain undetectable by interferometers with minimum baseline lengths >110 m at 154 MHz. The brightness temperature of these structures is on average 4 K in polarized intensity, peaking at 11 K. Rotation measure synthesis reveals that the structures have Faraday depths ranging from -2 rad m^-2 to 10 rad m^-2 with a large fraction peaking at ~+1 rad m^-2. We estimate a distance of 51+/-20 pc to the polarized emission based on measurements of the in-field pulsar J2330-2005. We detect four extragalactic linearly polarized point sources within the field in our compact source survey. Based on the known polarized source population at 1.4 GHz and non-detections at 154 MHz, we estimate an upper limit on the depolarization ratio of 0.08 from 1.4 GHz to 154 MHz.
Diagnostics of polarized emission provide us with valuable information on the Galactic magnetic field and the state of turbulence in the interstellar medium, which cannot be obtained from synchrotron intensity alone. In Paper I (Herron et al. 2017b),
This study aims to characterize linear polarization structures in LOFAR observations of the interstellar medium (ISM) in the 3C196 field, one of the primary fields of the LOFAR-Epoch of Reionization key science project. We have used the high band ant
We have observed the Galactic Center (GC) region at 0.154 and 0.255 GHz with the GMRT. A total of 62 compact likely extragalactic sources are detected. Their scattering sizes go down linearly with increasing angular distance from the GC up to about 1
The Interstellar Medium (ISM) comprises gases at different temperatures and densities, including ionized, atomic, molecular species, and dust particles. The neutral ISM is dominated by neutral hydrogen and has ionization fractions up to 8%. The conce
Studying the gravitational-wave sky with pulsar timing arrays (PTAs) is a key science goal for the Square Kilometre Array (SKA) and its pathfinder telescopes. With current PTAs reaching sub-microsecond timing precision, making accurate measurements o