ﻻ يوجد ملخص باللغة العربية
The electrical resistivity $rho$ and Hall coefficient R$_H$ of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to $H = 37.5$ T, large enough to access the normal state at $T to 0$, for closely spaced dopings $p$ across the pseudogap critical point at $p^star = 0.235$. Below $p^star$, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing $p$. Taken together, these upturns show that the normal-state carrier density $n$ at $T = 0$ drops upon entering the pseudogap phase. Quantitatively, it goes from $n = 1 + p$ at $p = 0.24$ to $n = p$ at $p = 0.20$. By contrast, the mobility does not change appreciably, as revealed by the magneto-resistance. The transition has a width in doping and some internal structure, whereby R$_H$ responds more slowly than $rho$ to the opening of the pseudogap. We attribute this difference to a Fermi surface that supports both hole-like and electron-like carriers in the interval $0.2 < p < p^star$, with compensating contributions to R$_H$. Our data are in excellent agreement with recent high-field data on YBCO and LSCO. The quantitative consistency across three different cuprates shows that a drop in carrier density from $1 + p$ to $p$ is a universal signature of the pseudogap transition at $T=0$. We discuss the implication of these findings for the nature of the pseudogap phase.
The thermopower S of the high-Tc superconductor La(1.6-x)Nd(0.4)Sr(x)CuO(4) was measured as a function of temperature T near its pseudogap critical point, the critical hole doping p* where the pseudogap temperature T* goes to zero. Just above p*, S/T
The Seebeck coefficient (thermopower) $S$ of the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ was measured across its doping phase diagram (from $p = 0.12$ to $p = 0.25$), at various temperatures down to $T simeq 2$ K, in the normal sta
We report thermopower measurements under hydrostatic pressure on the cuprate superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ (Nd-LSCO), at low-temperature in the normal state accessed by suppressing superconductivity with a magnetic field up to $H
We report an angle-resolved photoemission study of the charge stripe ordered La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ system. A comparative and quantitative line shape analysis is presented as the system evolves from the overdoped regime into the charge o
The Seebeck coefficient $S$ of the cuprate superconductor La$ _{2-x} $Sr$_{x} $CuO$ _{4}$ (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from $x = 0.07$ to $x = 0.1