ترغب بنشر مسار تعليمي؟ اضغط هنا

The modified first laws of thermodynamics of anti-de Sitter and de Sitter space-times

108   0   0.0 ( 0 )
 نشر من قبل Deyou Chen
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We modify the first laws of thermodynamics of a Reissner-Nordstrom anti-de Sitter black hole and a pure de Sitter space-time by the surface tensions. The corresponding Smarr relations are obeyed. The cosmological constants are first treated as fixed constants, and then as variables associated to the pressures. For the black hole, the law is written as $delta E = T delta S - sigmadelta A$ when the cosmological constant is fixed, where $E$ is the Misner-Sharp mass and $sigma$ is the surface tension. Adopting the varied constant, we modify the law as $delta E_0 = T delta S - sigma_{eff}delta A +Vdelta P$, where $E_0=M-frac{Q^2}{2r_+}$ is the enthalpy. The thermodynamical properties are investigated. For the de Sitter space-time, the expressions of the modified laws are different from these of the black hole. The differential way to derive the law is discussed.

قيم البحث

اقرأ أيضاً

104 - Cong Li , Chao Fang , Miao He 2018
We first study the thermodynamics of Bardeen-AdS black hole by the $T$-$r_{h}$ diagram, where T is the Hawking temperature and $r_{h}$ is the radius of event horizon. The cut-off radius which is the minimal radius of the thermodynamical stable Bardee n black hole can be got, and the cut-off radius is the same with the result of the heat capacity analysis. Moreover, by studying the parameter $g$, which is interpreted as a gravitationally collapsed magnetic monopole arising in a specific form of non-linear electrodynamics, in the Bardeen black hole, we can get a critical value $g_{m}$ and different phenomenons with different values of parameter $g$. For $g>g_{m}$, there is no second order phase transition. We also research the thermodynamical stability of the Bardeen black hole by the Gibbs free energy and the heat capacity. In addition, the phase transition is discussed.
We test the robustness of the conditions required for the existence of (supersymmetric) warped flux anti-de Sitter, de Sitter, and Minkowski backgrounds in supergravity theories using as examples suitable foliations of anti-de Sitter spaces. We find that there are supersymmetric de Sitter solutions in supergravity theories including maximally supersymmetric ones in 10- and 11-dimensional supergravities. Moreover, warped flux Minkowski backgrounds can admit Killing spinors which are not Killing on the Minkowski subspace and therefore cannot be put in a factorized form.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
We construct a class of extended shift symmetries for fields of all integer spins in de Sitter (dS) and anti-de Sitter (AdS) space. These generalize the shift symmetry, galileon symmetry, and special galileon symmetry of massless scalars in flat spac e to all symmetric tensor fields in (A)dS space. These symmetries are parametrized by generalized Killing tensors and exist for fields with particular discrete masses corresponding to the longitudinal modes of massive fields in partially massless limits. We construct interactions for scalars that preserve these shift symmetries, including an extension of the special galileon to (A)dS space, and discuss possible generalizations to interacting massive higher-spin particles.
We revisit the calculation of the thermal free energy for string theory in three-dimensional anti-de Sitter spacetime with Neveu-Schwarz-Neveu-Schwarz flux. The path integral calculation is exploited to confirm the off-shell Hilbert space and we find that the Casimir of the discrete representations of the isometry group takes values in a half-open interval. We extend the free energy calculation to the case of superstrings, calculate the boundary toroidal twisted partition function in the Ramond-Ramond sector, and prove lower bounds on the boundary conformal dimension from the bulk perspective. We classify Ramond-Ramond ground states and construct their second quantized partition function. The partition function exhibits intriguing modular properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا