ترغب بنشر مسار تعليمي؟ اضغط هنا

The Orbit and Transit Prospects for $beta$ Pictoris b constrained with One Milliarcsecond Astrometry

102   0   0.0 ( 0 )
 نشر من قبل Jason Wang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A principal scientific goal of the Gemini Planet Imager (GPI) is obtaining milliarcsecond astrometry to constrain exoplanet orbits. However, astrometry of directly imaged exoplanets is subject to biases, systematic errors, and speckle noise. Here we describe an analytical procedure to forward model the signal of an exoplanet that accounts for both the observing strategy (angular and spectral differential imaging) and the data reduction method (Karhunen-Lo`eve Image Projection algorithm). We use this forward model to measure the position of an exoplanet in a Bayesian framework employing Gaussian processes and Markov chain Monte Carlo (MCMC) to account for correlated noise. In the case of GPI data on $beta$ Pic b, this technique, which we call Bayesian KLIP-FM Astrometry (BKA), outperforms previous techniques and yields 1$sigma$-errors at or below the one milliarcsecond level. We validate BKA by fitting a Keplerian orbit to twelve GPI observations along with previous astrometry from other instruments. The statistical properties of the residuals confirm that BKA is accurate and correctly estimates astrometric errors. Our constraints on the orbit of $beta$ Pic b firmly rule out the possibility of a transit of the planet at 10-$sigma$ significance. However, we confirm that the Hill sphere of $beta$ Pic b will transit, giving us a rare chance to probe the circumplanetary environment of a young, evolving exoplanet. We provide an ephemeris for photometric monitoring of the Hill sphere transit event, which will begin at the start of April in 2017 and finish at the end of January in 2018.



قيم البحث

اقرأ أيضاً

We present $H$-band observations of $beta$ Pic with the Gemini Planet Imagers (GPIs) polarimetry mode that reveal the debris disk between ~0.3 (~6 AU) and ~1.7 (~33 AU), while simultaneously detecting $beta$ Pic $b$. The polarized disk image was fit with a dust density model combined with a Henyey-Greenstein scattering phase function. The best fit model indicates a disk inclined to the line of sight ($phi=85.27{deg}^{+0.26}_{-0.19}$) with a position angle $theta_{PA}=30.35{deg}^{+0.29}_{-0.28}$ (slightly offset from the main outer disk, $theta_{PA}approx29{deg}$), that extends from an inner disk radius of $23.6^{+0.9}_{-0.6}$ AU to well outside GPIs field of view. In addition, we present an updated orbit for $beta$ Pic $b$ based on new astrometric measurements taken in GPIs spectroscopic mode spanning 14 months. The planet has a semi-major axis of $a=9.2^{+1.5}_{-0.4}$AU, with an eccentricity $eleq 0.26$. The position angle of the ascending node is $Omega=31.75{deg}pm0.15$, offset from both the outer main disk and the inner disk seen in the GPI image. The orbital fit constrains the stellar mass of $beta$ Pic to $1.60pm0.05 M_{odot}$. Dynamical sculpting by $beta$ Pic $b$ cannot easily account for the following three aspects of the inferred disk properties: 1) the modeled inner radius of the disk is farther out than expected if caused by $beta$ Pic b; 2) the mutual inclination of the inner disk and $beta$ Pic $b$ is $4{deg}$, when it is expected to be closer to zero; and 3) the aspect ratio of the disk ($h_0 = 0.137^{+0.005}_{-0.006}$) is larger than expected from interactions with $beta$ Pic $b$ or self-stirring by the disks parent bodies.
Photometric monitoring of Beta Pictoris in 1981 showed anomalous fluctuations of up to 4% over several days, consistent with foreground material transiting the stellar disk. The subsequent discovery of the gas giant planet Beta Pictoris b and the pre dicted transit of its Hill sphere to within 0.1 au projected distance of the planet provided an opportunity to search for the transit of a circumplanetary disk in this $21pm 4$ Myr-old planetary system. Continuous broadband photometric monitoring of Beta Pictoris requires ground-based observatories at multiple longitudes to provide redundancy and to provide triggers for rapid spectroscopic followup. These observatories include the dedicated Beta Pictoris monitoring observatory bRing at Sutherland and Siding Springs, the ASTEP400 telescope at Concordia, and observations from the space observatories BRITE and Hubble Space Telescope. We search the combined light curves for evidence of short period transient events caused by rings and for longer term photometric variability due to diffuse circumplanetary material. We find no photometric event that matches with the event seen in November 1981, and there is no systematic photometric dimming of the star as a function of the Hill sphere radius. We conclude that the 1981 event was not caused by the transit of a circumplanetary disk around Beta Pictoris b. The upper limit on the long term variability of Beta Pictoris places an upper limit of $1.8times 10^{22}$ g of dust within the Hill sphere. Circumplanetary material is either condensed into a non-transiting disk, is condensed into a disk with moons that has a small obliquity, or is below our detection threshold. This is the first time that a dedicated international campaign has mapped the Hill sphere transit of a gas giant extrasolar planet at 10 au.
196 - Eric L. Nielsen 2014
We present new astrometry for the young (12--21 Myr) exoplanet beta Pictoris b taken with the Gemini/NICI and Magellan/MagAO instruments between 2009 and 2012. The high dynamic range of our observations allows us to measure the relative position of b eta Pic b with respect to its primary star with greater accuracy than previous observations. Based on a Markov Chain Monte Carlo analysis, we find the planet has an orbital semi-major axis of 9.1 (+5.3, -0.5) AU and orbital eccentricity <0.15 at 68% confidence (with 95% confidence intervals of 8.2--48 AU and 0.00--0.82 for semi-major axis and eccentricity, respectively, due to a long narrow degenerate tail between the two). We find that the planet has reached its maximum projected elongation, enabling higher precision determination of the orbital parameters than previously possible, and that the planets projected separation is currently decreasing. With unsaturated data of the entire beta Pic system (primary star, planet, and disk) obtained thanks to NICIs semi-transparent focal plane mask, we are able to tightly constrain the relative orientation of the circumstellar components. We find the orbital plane of the planet lies between the inner and outer disks: the position angle (PA) of nodes for the planets orbit (211.8 +/- 0.3 degrees) is 7.4 sigma greater than the PA of the spine of the outer disk and 3.2 sigma less than the warped inner disk PA, indicating the disk is not collisionally relaxed. Finally, for the first time we are able to dynamically constrain the mass of the primary star beta Pic to 1.76 (+0.18, -0.17) solar masses.
Context. {beta} Pictoris b is one of the most studied objects nowadays since it was identified with VLT/NaCo as a bona-fide exoplanet with a mass of about 9 times that of Jupiter at an orbital separation of 8-9 AU. The link between the planet and the dusty disk is unambiguously attested and this system provides an opportunity to study the disk/planet interactions and to constrain formation and evolutionary models of gas giant planets. Still, {beta} Pictoris b had never been confirmed with other telescopes so far. Aims. We aimed at an independent confirmation using a different instrument. Methods. We retrieved archive images from Gemini South obtained with the instrument NICI, which is designed for high contrast imaging. The observations combine coronagraphy and angular differential imaging and were obtained at three epochs in Nov. 2008, Dec. 2009 and Dec. 2010. Results. We report the detection with NICI of the planet {beta} Pictoris b in Dec. 2010 images at a separation of 404 pm 10 mas and P A = 212.1 pm 0.7{deg} . It is the first time this planet is observed with a telescope different than the VLT.
The intermediate-mass star Beta Pictoris is known to be surrounded by a structured edge-on debris disk within which a gas giant planet was discovered orbiting at 8-10 AU. The physical properties of Beta Pic b were previously inferred from broad and n arrow-band 0.9-4.8 microns photometry. We used commissioning data of the Gemini Planet Imager (GPI) to obtain new astrometry and a low-resolution (R=35-39) J-band (1.12-1.35 microns) spectrum of the planet. We find that the planet has passed the quadrature. We constrain its semi-major axis to $leq$ 10 AU (90 % prob.) with a peak at 8.9+0.4-0.6 AU. The joint fit of the planet astrometry and the most recent radial velocity measurements of the star yields a planets dynamical mass $leq$ 20 MJup (greater than 96 % prob.). The extracted spectrum of Beta Pic b is similar to those of young L1-1.5+1 dwarfs. We use the spectral type estimate to revise the planet luminosity to log(L/Lsun)=-3.90+-0.07. The 0.9-4.8 microns photometry and spectrum are reproduced for Teff=1650+-150 K and a log g lower than 4.7 dex by 12 grids of PHOENIX-based and LESIA atmospheric models. If we adopt the most recent system age estimate (21+-4 Myr), the bolometric luminosity and the constraints on the dynamical mass of Beta Pic b are only reproduced by warm- and hot-start tracks with initial entropies Si greater than 10.5 kB/baryon. Such initial conditions may result from an inefficient accretion shock and/or a planetesimal density at formation higher than in the classical core accretion model. Considering a younger age for the system or a conservative formation time for Beta Pic b does not change these conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا