ﻻ يوجد ملخص باللغة العربية
The emission of dispersive waves (DWs) by temporal solitons can be described as a cascaded four-wave mixing process triggered by a pair of monochromatic continuous waves (CWs). We report experimental and numerical results demonstrating that the efficiency of this process is strongly and non-trivially affected by the frequency detuning of the CW pump lasers. We explain our results by showing that individual cycles of the input dual-frequency beat signal can evolve as higher-order solitons whose temporal compression and soliton fission govern the DW efficiency. Analytical predictions based on the detuning dependence of the soliton order are shown to be in excellent agreement with experimental and numerical observations.
We report on a high-efficiency 461 nm blue light conversion from an external cavity-enhanced second-harmonic generation of a 922 nm diode laser with a quasi-phase-matched KTP crystal (PPKTP). By choosing a long crystal (LC=20 mm) and twice looser foc
Taking advantage of an extended Lugiato--Lefever equation with third-order dispersion, we numerically show that dark cavity solitons formed in normal dispersion of microresonators are capable of emitting dispersive waves in both normal and anomalous
Optical frequency combs provide equidistant frequency markers in the infrared, visible and ultra-violet and can link an unknown optical frequency to a radio or microwave frequency reference. Since their inception frequency combs have triggered major
We investigate in detail the qualitative similarities between the pulse localization characteristics observed using sinusoidal phase modulation during linear propagation and those seen during the evolution of Akhmediev breathers during propagation in
We present a type of grism, a series combination of transmission grating and prism, in which we reduce the number of diffraction orders and achieve a configuration with very high angular dispersion. The grism can be fabricated from a single dielectri