ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical and ultraviolet spectroscopic analysis of SN 2011fe at late times

81   0   0.0 ( 0 )
 نشر من قبل Edward A. Baron
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical spectra of the nearby Type Ia supernova SN 2011fe at 100, 205, 311, 349, and 578 days post-maximum light, as well as an ultraviolet spectrum obtained with Hubble Space Telescope at 360 days post-maximum light. We compare these observations with synthetic spectra produced with the radiative transfer code PHOENIX. The day +100 spectrum can be well fit with models which neglect collisional and radiative data for forbidden lines. Curiously, including this data and recomputing the fit yields a quite similar spectrum, but with different combinations of lines forming some of the stronger features. At day +205 and later epochs, forbidden lines dominate much of the optical spectrum formation; however, our results indicate that recombination, not collisional excitation, is the most influential physical process driving spectrum formation at these late times. Consequently, our synthetic optical and UV spectra at all epochs presented here are formed almost exclusively through recombination-driven fluorescence. Furthermore, our models suggest that the ultraviolet spectrum even as late as day +360 is optically thick and consists of permitted lines from several iron-peak species. These results indicate that the transition to the nebular phase in Type Ia supernovae is complex and highly wavelength-dependent.



قيم البحث

اقرأ أيضاً

Type Ia supernovae are widely accepted to be the outcomes of thermonuclear explosions in white dwarf stars. However, many details of these explosions remain uncertain (e.g. the mass, ignition mechanism, and flame speed). Theory predicts that at very late times (beyond 1000 d) it might be possible to distinguish between explosion models. Few very nearby supernovae can be observed that long after the explosion. The Type Ia supernova SN 2011fe located in M101 and along a line of sight with negligible extinction, provides us with the once-in-a-lifetime chance to obtain measurements that may distinguish between theoretical models. In this work, we present the analysis of photometric data of SN 2011fe taken between 900 and 1600 days after explosion with Gemini and HST. At these extremely late epochs theory suggests that the light curve shape might be used to measure isotopic abundances which is a useful model discriminant. However, we show in this work that there are several currently not well constrained physical processes introducing large systematic uncertainties to the isotopic abundance measurement. We conclude that without further detailed knowledge of the physical processes at this late stage one cannot reliably exclude any models on the basis of this dataset.
We present multiple spectropolarimetric observations of the nearby Type Ia supernova (SN) 2011fe in M101, obtained before, during, and after the time of maximum apparent visual brightness. The excellent time coverage of our spectropolarimetry has all owed better monitoring of the evolution of polarization features than is typical, which has allowed us new insight into the nature of normal SNe Ia. SN 2011fe exhibits time-dependent polarization in both the continuum and strong absorption lines. At early epochs, red wavelengths exhibit a degree of continuum polarization of up to 0.4%, likely indicative of a mild asymmetry in the electron-scattering photosphere. This behavior is more common in sub-luminous SNe Ia than in normal events, such as SN2011fe. The degree of polarization across a collection of absorption lines varies dramatically from epoch to epoch. During the earliest epoch a $lambda$4600-5000 AA complex of absorption lines shows enhanced polarization at a different position angle than the continuum. We explore the origin of these features, presenting a few possible interpretations, without arriving at a single favored ion. During two epochs near maximum, the dominant polarization feature is associated with the Si{sc ii} $lambda$6355 AA absorption line. This is common for SNeIa, but for SN2011fe the polarization of this feature increases after maximum light, whereas for other SNeIa, that polarization feature was strongest before maximum light.
We present photometric and spectroscopic observations of the interacting transient SN 2009ip taken during the 2013 and 2014 observing seasons. We characterise the photometric evolution as a steady and smooth decline in all bands, with a decline rate that is slower than expected for a solely $^{56}$Co-powered supernova at late phases. No further outbursts or eruptions were seen over a two year period from 2012 December until 2014 December. SN 2009ip remains brighter than its historic minimum from pre-discovery images. Spectroscopically, SN 2009ip continues to be dominated by strong, narrow ($lesssim$2000 km~s$^{-1}$) emission lines of H, He, Ca, and Fe. While we make tenuous detections of [Fe~{sc ii}] $lambda$7155 and [O~{sc i}] $lambdalambda$6300,6364 lines at the end of 2013 June and the start of 2013 October respectively, we see no strong broad nebular emission lines that could point to a core-collapse origin. In general, the lines appear relatively symmetric, with the exception of our final spectrum in 2014 May, when we observe the appearance of a redshifted shoulder of emission at +550 km~s$^{-1}$. The lines are not blue-shifted, and we see no significant near- or mid-infrared excess. From the spectroscopic and photometric evolution of SN 2009ip until 820 days after the start of the 2012a event, we still see no conclusive evidence for core-collapse, although whether any such signs could be masked by ongoing interaction is unclear.
We use observed UV through near IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal SNe Ia and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metall icity of Z_solar/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed detonation model with a transition density that has been fit to other Branch-normal Type Ia supernovae. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ~0.1 M_sun than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colors due to variations in the progenitor metallicity, which suggests that colors are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.
Extensive photometric and spectroscopic observations are presented for SN 2014cx, a type IIP supernova (SN) exploding in the nearby galaxy NGC 337. The observations are performed in optical and ultraviolet bands, covering from -20 to +400 days from t he peak light. The stringent detection limit from prediscovery images suggests that this supernova was actually detected within about 1 day after explosion. Evolution of the very early-time light curve of SN 2014cx is similar to that predicted from a shock breakout and post-shock cooling decline before reaching the optical peak. Our photometric observations show that SN 2014cx has a plateau duration of ~ 100 days, an absolute V-band magnitude of ~ -16.5 mag at t~50 days, and a nickel mass of 0.056+-0.008 Msun. The spectral evolution of SN 2014cx resembles that of normal SNe IIP like SN 1999em and SN 2004et, except that it has a slightly higher expansion velocity (~ 4200 km/s at 50 days). From the cooling curve of photospheric temperature, we derive that the progenitor has a pre-explosion radius of ~ 640 Rsun, consistent with those obtained from SNEC modeling (~ 620 Rsun) and hydrodynamical modeling of the observables (~ 570 Rsun). Moreover, the hydrodynamical simulations yield a total explosion energy of ~ 0.4*10e51 erg, and an ejected mass of ~ 8 Msun. These results indicate that the immediate progenitor of SN 2014cx is likely a red supergiant star with a mass of ~ 10 Msun.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا