ترغب بنشر مسار تعليمي؟ اضغط هنا

21-year timing of the black-widow pulsar J2051-0827

136   0   0.0 ( 0 )
 نشر من قبل Golam Shaifullah
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Timing results for the black-widow pulsar J2051-0827 are presented, using a 21-year dataset from four European Pulsar Timing Array telescopes and the Parkes radio telescope. This dataset, which is the longest published to date for a black-widow system, allows for an improved analysis that addresses previously unknown biases. While secular variations, as identified in previous analyses, are recovered, short-term variations are detected for the first time. Concurrently, a significant decrease of approx. 2.5x10-3 cm-3 pc in the dispersion measure associated with PSR J2051-0827 is measured for the first time and improvements are also made to estimates of the proper motion. Finally, PSR J2051-0827 is shown to have entered a relatively stable state suggesting the possibility of its eventual inclusion in pulsar timing arrays.



قيم البحث

اقرأ أيضاً

We report on an unusually bright observation of PSR J2051$-$0827 recorded during a regular monitoring campaign of black-widow pulsar systems with the Effelsberg 100-m telescope. Through fortunate coincidence, a particularly bright scintillation maxim um is simultaneous with the eclipse by the companion, enabling precise measurements of variations in the flux density, dispersion measure (DM), and scattering strength throughout the eclipse. The flux density is highly variable throughout the eclipse, with a peak 1.7 times the average away from the eclipse, and yet does not significantly decrease on average. We recover the flux density variations from the measured DM variations using geometric optics, with a relative velocity as the only free parameter. We measure an effective velocity of (470 $pm$ 10) km/s, consistent with the relative orbital motion of the companion, suggesting that the outflow velocity of the lensing material is low, or is directly along the line of sight. The 2 per cent uncertainty on the effective velocity is a formal error; systematics related to our current model are likely to dominate, and we detail several extensions to the model to be considered in a full treatment of lensing. This is a demonstration of the causal link between DM and lensing; the flux density variations can be predicted directly through the derivatives of DM. Going forward, this approach can be applied to investigate the dynamics of other eclipsing systems, and to investigate the physical nature of scintillation and lensing in the ionized interstellar medium.
Using the Giant Metrewave Radio Telescope (GMRT) we performed deep observations to search for radio pulsations in the directions of unidentified Fermi Large Area Telescope (LAT) gamma-ray sources. We report the discovery of an eclipsing black-widow m illisecond pulsar, PSR J1544+4937, identified with the un-cataloged gamma-ray source Fermi J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hours compact circular orbit with a very low-mass companion (Mc > 0.017 Msun). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect gamma-ray pulsations from this pulsar, confirming it as the source powering the gamma-ray emission.
We study the timing stability of three black widow pulsars, both in terms of their long-term spin evolution and their shorter-term orbital stability. The erratic timing behaviour and radio eclipses of the first two black widow pulsar systems discover ed (PSRs B1957+20 and J2051$-$0827) was assumed to be representative for this class of pulsars. With several new black widow systems added to this population in the last decade, there are now several systems known that do not show these typical orbital variations or radio eclipses. We present timing solutions using 7$-$8 yrs of observations from four of the European Pulsar Timing Array telescopes for PSRs,J0023+0923, J2214+3000 and J2234+0944, and confirm that two of these systems do not show any significant orbital variability over our observing time span, both in terms of secular or orbital parameters. The third pulsar PSR J0023+0923 shows orbital variability and we discuss the implications for the timing solution. Our results from the long-term timing of these pulsars provide several new or improved parameters compared to earlier works. We discuss our results regarding the stability of these pulsars, and the stability of the class of black widow pulsars in general, in the context of the binary parameters, and discuss the potential of the Roche-lobe filling factor of the companion star being an indicator for stability of these systems.
In this paper we report on $sim10$ years of observations of PSR J2051$-$0827, at radio frequencies in the range 110--4032 MHz. We investigate the eclipse phenomena of this black widow pulsar using model fits of increased dispersion and scattering of the pulsed radio emission as it traverses the eclipse medium. These model fits reveal variability in dispersion features on timescales as short as the orbital period, and previously unknown trends on timescales of months--years. No clear patterns are found between the low-frequency eclipse widths, orbital period variations and trends in the intra-binary material density. Using polarisation calibrated observations we present the first available limits on the strength of magnetic fields within the eclipse region of this system; the average line of sight field is constrained to be $10^{-4}$ G $lesssim B_{||} lesssim 10^2$ G, while for the case of a field directed near-perpendicular to the line of sight we find $B_{perp} lesssim 0.3$ G. Depolarisation of the linearly polarised pulses during the eclipse is detected and attributed to rapid rotation measure fluctuations of $sigma_{text{RM}} gtrsim 100$ rad m$^{-2}$ along, or across, the line of sights averaged over during a sub-integration. The results are considered in the context of eclipse mechanisms, and we find scattering and/or cyclotron absorption provide the most promising explanation, while dispersion smearing is conclusively ruled out. Finally, we estimate the mass loss rate from the companion to be $dot{M}_{text{C}} sim 10^{-12} M_odot$ yr$^{-1}$, suggesting that the companion will not be fully evaporated on any reasonable timescale.
We report on the timing observations of the millisecond pulsar PSR J2055+3829 originally discovered as part of the SPAN512 survey conducted with the Nanc{c}ay Radio Telescope. The pulsar has a rotational period of 2.089 ms, and is in a tight 3.1 hr o rbit around a very low mass ($0.023 leq m_c lesssim 0.053$ M$_odot$, 90% c.l.) companion. Our 1.4 GHz observations reveal the presence of eclipses of the pulsars radio signal caused by the outflow of material from the companion, for a few minutes around superior conjunction of the pulsar. The very low companion mass, the observation of radio eclipses, and the detection of time variations of the orbital period establish PSR J2055+3829 as a `black widow (BW) pulsar. Inspection of the radio signal from the pulsar during ingress and egress phases shows that the eclipses in PSR J2055+3829 are asymmetric and variable, as is commonly observed in other similar systems. More generally, the orbital properties of the new pulsar are found to be very similar to those of other known eclipsing BW pulsars. No gamma-ray source is detected at the location of the pulsar in recent textit{Fermi}-LAT source catalogs. We used the timing ephemeris to search ten years of textit{Fermi} Large Area Telescope (LAT) data for gamma-ray pulsations, but were unable to detect any, possibly because of the pulsars large distance. We finally compared the mass functions of eclipsing and non-eclipsing BW pulsars and confirmed previous findings that eclipsing BWs have higher mass functions than their non-eclipsing counterparts. Larger inclinations could explain the higher mass functions of eclipsing BWs. On the other hand, the mass function distributions of Galactic disk and globular cluster BWs appear to be consistent, suggesting, despite the very different environments, the existence of common mechanisms taking place in the last stages of evolution of BWs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا