ﻻ يوجد ملخص باللغة العربية
Magnetization measurements were performed on two sigma-phase samples of Fe(100-x)V(x) (x=35.5, 34.1) vs. temperature, T, and in DC magnetic field, of various amplitudes. Using three characteristic temperatures, magnetic phase diagrams in the H-T plane have been designed testifying to a re-entrant character of magnetism. The ground magnetic state, a spin glass (SG), was evidenced to be composed of two sub phases: one with a weak irreversibility and the other with a strong irreversibility. Two critical lines were reconstructed within the SG state. Both of them show a crossover from the Gabay-Toulouse behavior (low field) to a linear and/or quasi-Almeida-Touless behavior. A strong difference in the effect of the applied magnetic field on the SG phase in the two samples was revealed.
Magnetization measurements were carried out in the in field-cooled (FC) and in zero-field-cooled (ZFC) conditions versus temperature, T, and external magnetic field, H, on a sigma-phase Fe47Mo53 compound. Analysis of the measured M_FC and M_ZFC curve
In-field DC and AC magnetization measurements were carried out on a sigma-phase Fe55Re45 intermetallic compound aimed at determination of the magnetic phase diagram in the H-T plane. Field cooled, M_FC, and zero-field cooled, M_ZFC, DC magnetization
Systematic experimental (vibrating sample magnetometry) and theoretical (electronic structure calculations using charge and spin self-consistent Korringa-Kohn-Rostoker Green function method) studies were performed on a series of intermetallic sigma-p
Formation energy of the sigma-phase in the Fe-V alloy system, Delta E, was computed in the full compositional range of its occurrence (34 < x < 60) using the electronic band structure calculations by means of the KKR method. Delta E-values were found
A series of sigma-phase Fe_{100-x}V_x samples with 34.4 < x < 59.0 were investigated by neutron and X-ray diffraction and Mossbauer spectroscopy (MS) techniques. The first two methods were used for verification of the transformation from alpha to sig