ﻻ يوجد ملخص باللغة العربية
The literature provides dichotomies involving homomorphisms (like the G 0 dichotomy) or reductions (like the characterization of sets potentially in a Wadge class of Borel sets, which holds on a subset of a product). However, part of the motivation behind the latter result was to get reductions on the whole product, like in the classical notion of Borel reducibility considered in the study of analytic equivalence relations. This is not possible in general. We show that, under some acyclicity (and also topological) assumptions, this is widely possible. In particular, we prove that, for any non-self dual Borel class {Gamma}, there is a concrete finite =< c-antichain basis for the class of Borel relations, whose closure has acyclic symmetrization, and which are not potentially in {Gamma}. Along similar lines, we provide a sufficient condition for =< c-reducing G 0. We also prove a similar result giving a minimum set instead of an antichain if we allow rectangular reductions.
The Doob convergence theorem implies that the set of divergence of any martingale has measure zero. We prove that, conversely, any $G_{deltasigma}$ subset of the Cantor space with Lebesgue-measure zero can be represented as the set of divergence of s
The Omitting Types Theorem in model theory and the Baire Category Theorem in topology are known to be closely linked. We examine the precise relation between these two theorems. Working with a general notion of logic we show that the classical Omitti
Menger conjectured that subsets of $mathbb R$ with the Menger property must be $sigma$-compact. While this is false when there is no restriction on the subsets of $mathbb R$, for projective subsets it is known to follow from the Axiom of Projective D
For a group $G$ first order definable in a structure $M$, we continue the study of the definable topological dynamics of $G$. The special case when all subsets of $G$ are definable in the given structure $M$ is simply the usual topological dynamics o
We establish a topological duality for bounded lattices. The two main features of our duality are that it generalizes Stone duality for bounded distributive lattices, and that the morphisms on either side are not the standard ones. A positive consequ