ﻻ يوجد ملخص باللغة العربية
For any two squares A and B of an m x n checkerboard, we determine whether it is possible to move a checker through a route that starts at A, ends at B, and visits each square of the board exactly once. Each step of the route moves to an adjacent square, either to the east or to the north, and may step off the edge of the board in a manner corresponding to the usual construction of a projective plane by applying a twist when gluing opposite sides of a rectangle. This generalizes work of M.H.Forbush et al. for the special case where m = n.
We provide a new geometric interpretation of the multidegrees of the (iterated) Kapranov embedding $Phi_n:overline{M}_{0,n+3}hookrightarrow mathbb{P}^1times mathbb{P}^2times cdots times mathbb{P}^n$, where $overline{M}_{0,n+3}$ is the moduli space of
In 1999, Katona and Kierstead conjectured that if a $k$-uniform hypergraph $cal H$ on $n$ vertices has minimum co-degree $lfloor frac{n-k+3}{2}rfloor$, i.e., each set of $k-1$ vertices is contained in at least $lfloor frac{n-k+3}{2}rfloor$ edges, the
A set $X$ in the Euclidean space $mathbb{R}^d$ is called an $m$-distance set if the set of Euclidean distances between two distinct points in $X$ has size $m$. An $m$-distance set $X$ in $mathbb{R}^d$ is said to be maximal if there does not exist a v
In this paper, we present some new nonexistence results on $(m,n)$-generalized bent functions, which improved recent results. More precisely, we derive new nonexistence results for general $n$ and $m$ odd or $m equiv 2 pmod{4}$, and further explicitl
We derive exactly the number of Hamiltonian paths H(n) on the two dimensional Sierpinski gasket SG(n) at stage $n$, whose asymptotic behavior is given by $frac{sqrt{3}(2sqrt{3})^{3^{n-1}}}{3} times (frac{5^2 times 7^2 times 17^2}{2^{12} times 3^5 tim