ترغب بنشر مسار تعليمي؟ اضغط هنا

Reading and Writing Single-Atom Magnets

128   0   0.0 ( 0 )
 نشر من قبل Fabian Donat Natterer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The highest-density magnetic storage media will code data in single-atom bits. To date, the smallest individually addressable bistable magnetic bits on surfaces consist of 5-12 atoms. Long magnetic relaxation times were demonstrated in molecular magnets containing one lanthanide atom, and recently in ensembles of single holmium (Ho) atoms supported on magnesium oxide (MgO). Those experiments indicated the possibility for data storage at the fundamental limit, but it remained unclear how to access the individual magnetic centers. Here we demonstrate the reading and writing of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states by tunnel magnetoresistance and write with current pulses using a scanning tunneling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron paramagnetic resonance (EPR) on a nearby Fe sensor atom, which shows that Ho has a large out-of-plane moment of $(10.1 pm 0.1)$ $mu_{rm B}$ on this surface. In order to demonstrate independent reading and writing, we built an atomic scale structure with two Ho bits to which we write the four possible states and which we read out remotely by EPR. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is possible.

قيم البحث

اقرأ أيضاً

We use a combination of charge writing and scanning gate microscopy to map and modify the local charge neutrality point of graphene field-effect devices. We give a demonstration of the technique by writing remote charge in a thin dielectric layer ove r the graphene-metal interface and detecting the resulting shift in local charge neutrality point. We perform electrostatic simulations to characterize the gating effect of a realistic scanning probe tip on a graphene bilayer and find a good agreement with the experimental results.
80 - Yu-Chen Chen 2018
Single photon emitters in silicon carbide (SiC) are attracting attention as quantum photonic systems. However, to achieve scalable devices it is essential to generate single photon emitters at desired locations on demand. Here we report the controlle d creation of single silicon vacancy ($V_{Si}$) centres in 4H-SiC using laser writing without any post-annealing process. Due to the aberration correction in the writing apparatus and the non-annealing process, we generate single $V_{Si}$ centres with yields up to 30%, located within about 80 nm of the desired position in the transverse plane. We also investigated the photophysics of the laser writing $V_{Si}$ centres and conclude that there are about 16 photons involved in the laser writing $V_{Si}$ centres process. Our results represent a powerful tool in fabrication of single $V_{Si}$ centres in SiC for quantum technologies and provide further insights into laser writing defects in dielectric materials.
We demonstrate a one to one correspondence between the polarization state of a light pulse tuned to neutral exciton resonances of single semiconductor quantum dots and the spin state of the exciton that it photogenerates. This is accomplished using t wo variably polarized and independently tuned picosecond laser pulses. The first writes the spin state of the resonantly excited exciton. The second is tuned to biexcitonic resonances, and its absorption is used to read the exciton spin state. The absorption of the second pulse depends on its polarization relative to the exciton spin direction. Changes in the exciton spin result in corresponding changes in the intensity of the photoluminescence from the biexciton lines which we monitor, obtaining thus a one to one mapping between any point on the Poincare sphere of the light polarization to a point on the Bloch sphere of the exciton spin.
In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (of the order of microseconds), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets.
The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching o f the source and drain contacts. If the electrodes have opposite magnetizations the quantum turnstile operation allows the stepwise writing of intermediate excited states. In turn, the transient currents provide a way to read these states. Within our approach we take into account both the uniaxial and transverse anisotropy. The latter may induce additional quantum tunneling processes which affect the efficiency of the proposed read-and-write scheme. An equally weighted mixture of molecular spin states can be prepared if one of the electrodes is ferromagnetic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا