ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground Testing and Flight Demonstration of Charge Management of Insulated Test Masses Using UV LED Electron Photoemission

83   0   0.0 ( 0 )
 نشر من قبل Karthik Balakrishnan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The UV LED mission demonstrates the precise control of the potential of electrically isolated test masses that is essential for the operation of space accelerometers and drag free sensors. Accelerometers and drag free sensors were and remain at the core of geodesy, aeronomy, and precision navigation missions as well as gravitational science experiments and gravitational wave observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV LED mission and prior ground testing demonstrates that AlGaN UV LEDs operating at 255 nm are superior to Mercury vapor lamps because of their smaller size, lower draw, higher dynamic range, and higher control authority. We show flight data from a small satellite mission on a Saudi Satellite that demonstrates AC charge control (UV LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission is to bring the UV LED device Technology Readiness Level (TRL) to TRL 9 and the charge management system to TRL 7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag free system configuration. The test mass potential was measured with an ultra high impedance contact probe. Finally, the key electrical and optical characteristics of the UV LEDs showed less than 7.5 percent change in performance after 12 months in orbit.

قيم البحث

اقرأ أيضاً

Precise control over the potential of an electrically isolated proof mass is necessary for the operation of devices such as a Gravitational Reference Sensor (GRS) and satellite missions such as LISA. We show that AlGaN UV LEDs operating at 255 nm are an effective substitute for Mercury vapor lamps used in previous missions because of their ability to withstand space qualification levels of vibration and thermal cycling. After 27 thermal and thermal vacuum cycles and 9 minutes of 14.07 g RMS vibration, there is less than 3% change in current draw, less than 15% change in optical power, and no change in spectral peak or FWHM (full width at half maximum). We also demonstrate UV LED stimulated photoemission from a wide variety of thin film carbide proof mass coating candidates (SiC, Mo2C, TaC, TiC, ZrC) that were applied using electron beam evaporation on an Aluminum 6061-T6 substrate. All tested carbide films have measured quantum efficiencies of 3.8-6.8*10^-7 and reflectivities of 0.11-0.15, which compare favorably with the properties of previously used gold films. We demonstrate the ability to control proof mass potential on an 89 mm diameter spherical proof mass over a 20 mm gap in a GRS-like configuration. Proof mass potential was measured via a non-contact DC probe, which would allow control without introducing dynamic forcing of the spacecraft. Finally we provide a look ahead to an upcoming technology demonstration mission of UV LEDs and future applications toward charge control of electrically isolated proof masses.
We report on spectroscopy and time-of-flight measurements using an 18 keV fast-pulsed photoelectron source of adjustable intensity, ranging from single photoelectrons per pulse to 5 photoelectrons per microsecond at pulse repetition rates of up to 10 kHz. Short pulses between 40 ns and 40 microseconds in length were produced by switching light emitting diodes with central output wavelengths of 265 nm and 257 nm, in the deep ultraviolet (or UV-C) regime, at kHz frequencies. Such photoelectron sources can be useful calibration devices for testing the properties of high-resolution electrostatic spectrometers, like the ones used in current neutrino mass searches.
134 - M. Armano , H. Audley , J. Baird 2018
The LISA Pathfinder charge management device was responsible for neutralising the cosmic ray induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground an d in-flight that quantify the performance of this contactless discharge system which was based on photo-emission under UV illumination. In addition, a two-part simulation is described that was developed alongside the hardware. Modelling of the absorbed UV light within the Pathfinder sensor was carried out with the GEANT4 software toolkit and a separate MATLAB charge transfer model calculated the net photocurrent between the test masses and surrounding housing in the presence of AC and DC electric fields. We confront the results of these models with observations and draw conclusions for the design of discharge systems for future experiments like LISA that will also employ free-falling test masses.
133 - B. Wojtsekhowski 2014
Three experimental concepts investigating possible anisotropy of the speed of light are presented. They are based on i) beam deflection in a 180 degree magnetic arc, ii) narrow resonance production in an electron-positron collider, and iii) the ratio of magnetic moments of an electron and a positron moving in opposite directions.
The low-frequency resolution of space-based gravitational wave observatories such as LISA (Laser Interferometry Space Antenna) hinges on the orbital purity of a free-falling reference test mass inside a satellite shield. We present here a torsion pen dulum study of the forces that will disturb an orbiting test mass inside a LISA capacitive position sensor. The pendulum, with a measured torque noise floor below 10 fNm/sqrt{Hz} from 0.6 to 10 mHz, has allowed placement of an upper limit on sensor force noise contributions, measurement of the sensor electrostatic stiffness at the 5% level, and detection and compensation of stray DC electrostatic biases at the mV level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا