ﻻ يوجد ملخص باللغة العربية
We construct actions of the affine Yangian of type A on higher level Fock spaces by extending known actions of the Yangian of finite type A due to Uglov. This is a degenerate analog of a result by Takemura-Uglov, which constructed actions of the quantum toroidal algebra on higher level $q$-deformed Fock spaces.
The localized equivariant homology of the quiver variety of type $A_{N-1}^{(1)}$ can be identified with the level one Fock space by assigning a normalized torus fixed point basis to certain symmetric functions, Jack($mathfrak{gl}_N$) symmetric functi
We study braid group actions on Yangians associated with symmetrizable Kac-Moody Lie algebras. As an application, we focus on the affine Yangian of type A and use the action to prove that the image of the evaluation map contains the diagonal Heisenberg algebra inside $hat{mathfrak{gl}}_N$.
We introduce and investigate new invariants on the pair of modules $M$ and $N$ over quantum affine algebras $U_q(mathfrak{g})$ by analyzing their associated R-matrices. From new invariants, we provide a criterion for a monoidal category of finite-dim
For a Dynkin quiver $Q$ (of type ADE), we consider a central completion of the convolution algebra of the equivariant K-group of a certain Steinberg type graded quiver variety. We observe that it is affine quasi-hereditary and prove that its category
We show that ${rm End}_{bf U}(V_lambdaotimes V^{otimes n})$ is generated by the affine braid group $AB_n$ where ${bf U}=U_qmathfrak g(G_2)$, $V$ is its 7-dimensional irreducible representation and $V_lambda$ is an arbitrary irreducible representation.