ترغب بنشر مسار تعليمي؟ اضغط هنا

Shaving off Black Hole Soft Hair

62   0   0.0 ( 0 )
 نشر من قبل Massimo Porrati
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent, intriguing paper by Hawking, Perry and Strominger suggests that soft photons and gravitons can be regarded as black hole hair and may be relevant to the black hole information paradox. In this note we make use of factorization theorems for infrared divergences of the S-matrix to argue that by appropriately dressing in and out hard states, the soft-quanta-dependent part of the S-matrix becomes essentially trivial. The information paradox can be fully formulated in terms of dressed hard states, which do not depend on soft quanta.

قيم البحث

اقرأ أيضاً

80 - M. R. Setare , A. Jalali 2019
Recently it has been speculated that a set of infinitesimal ${rm Virasoro_{,L}}otimes{rm Virasoro_{,R}}$ diffeomorphisms exist which act non-trivially on the horizon of some black holes such as kerr and Kerr-Newman black hole cite{Haco:2018ske,Haco:2 019ggi}. Using this symmetry in covariant phase space formalism one can obtains Virasoro charges as surface integrals on the horizon. Kerr-Bolt spacetime is well-known for its asymptotically topology and has been studied widely in recent years. In this work we are interested to find conserved charge associated to the Virosora symmetry of Kerr-Bolt geometry using covariant phase space formalism. We will show right and left central charge are $c_R=c_L=12 J$ respectively. Our results also show good agreement with Kerr spacetime in the limiting behavior.
We study the property of matter in equilibrium with a static, spherically symmetric black hole in D-dimensional spacetime. It requires this kind of matter has an equation of state (omegaequiv p_r/rho=-1/(1+2kn), k,nin mathbb{N}), which seems to be in dependent of D. However, when we associate this with specific models, some interesting limits on space could be found: (i)(D=2+2kn) while the black hole is surrounded by cosmic strings; (ii)the black hole can be surrounded by linear dilaton field only in 4-dimensional spacetime. In both cases, D=4 is special.
We consider large gauge transformations of gravity and electromagnetism in D=4 asymptotically flat spacetime. Already at the classical level, we identify a canonical transformation that decouples the soft variables from the hard dynamics. We find tha t only the soft dynamics is constrained by BMS or large U(1) charge conservation. Physically this corresponds to the fact that sufficiently long-wavelength photons or gravitons that are added to the in-state will simply pass through the interaction region; they scatter trivially in their own sector. This implies in particular that the large gauge symmetries bear no relevance to the black hole information paradox. We also present the quantum version of soft decoupling. As a consistency check, we show that the apparent mixing of soft and hard modes in the original variables arises entirely from the long range field of the hard charges, which is fixed by gauge invariance and so contains no additional information.
466 - Peng Cheng 2021
We present a paradox for evaporating black holes, which is common in most schemes trying to avoid the firewall by decoupling early and late radiation. At the late stage of the black hole evaporation, the decoupling between early and late radiation ca n not be realized because the black hole has a very small coarse-grained entropy, then we are faced with the firewall again. We call the problem hair-loss paradox as a pun on losing black hole soft hair during the black hole evaporation and the situation that the information paradox has put so much pressure on researchers.
We demonstrate within the quantum field theoretical framework that an asymptotic particle falling into the black hole implants soft graviton hair on the horizon, conforming with the classical proposal of Hawking, Perry and Strominger. A key ingredien t to this result is the construction of gravitational Wilson line dressings of an infalling scalar field, carrying a definite horizon supertranslation charge. It is shown that a typical Schwarzschild state is degenerate, and can be labeled by different soft supertranslation hairs parametrized for radial trajectories by the mass and energy of the infalling particle and its asymptotic point of contact with the horizon. The supertranslation zero modes are also obtained in terms of zero-frequency graviton operators, and are shown to be the expected canonical partners of the linearized horizon charge that enlarge the horizon Hilbert space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا