ترغب بنشر مسار تعليمي؟ اضغط هنا

Ammonia excitation imaging of shocked gas towards the W28 gamma-ray source HESS J1801-233

49   0   0.0 ( 0 )
 نشر من قبل Nigel Maxted Dr
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present 12 mm Mopra observations of the dense (>10^3 cm^-3 ) molecular gas towards the north-east (NE) of the W28 supernova remnant (SNR). This cloud is spatially well-matched to the TeV gamma-ray source HESS J1801-233 and is known to be a SNR-molecular cloud interaction region. Shock-disruption is evident from broad NH3 (1,1) spectral line-widths in regions towards the W28 SNR, while strong detections of spatially-extended NH3(3,3), NH3(4,4) and NH3(6,6) inversion emission towards the cloud strengthen the case for the existence of high temperatures within the cloud. Velocity dispersion measurements and NH3(n,n)/(1,1) ratio maps, where n=2, 3, 4 and 6, indicate that the source of disruption is from the side of the cloud nearest to the W28 SNR, suggesting that it is the source of cloud-disruption. Towards part of the cloud, the ratio of ortho to para-NH3 is observed to exceed 2, suggesting gas-phase NH3 enrichment due to NH3 liberation from dust grain mantles. The measured NH3 abundance with respect to H2 is ~(1.2+/-0.5)*10^-9, which is not high, as might be expected for a hot, dense molecular cloud enriched by sublimated grain-surface molecules. The results are suggestive of NH3 sublimation and destruction in this molecular cloud, which is likely to be interacting with the W28 SNR shock.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of the interstellar medium towards the TeV $gamma$-ray sources HESS J1640$-$465 and HESS J1641$-$463 using results from the Mopra Southern Galactic Plane CO Survey and from a Mopra 7 mm-wavelength study. The $gamma$-ray sources are positionally coincident with two supernova remnants G338.3$-$0.0 and G338.5+0.1 respectively. A bright complex of HII regions connect the two SNRs and TeV objects. Observations in the CO(1-0) transition lines reveal substantial amounts of diffuse gas positionally coincident with the $gamma$-ray sources at multiple velocities along the line of sight, while 7 mm observations in CS, SiO, HC$_{3}$N and CH$_{3}$OH transition lines reveal regions of dense, shocked gas. Archival HI data from the Southern Galactic Plane Survey was used to account for the diffuse atomic gas. Physical parameters of the gas towards the TeV sources were calculated from the data. We find that for a hadronic origin for the $gamma$-ray emission, the cosmic-ray enhancement rates are $sim 10^{3}$ and $10^{2}$ times the local solar value for HESS J1640$-$465 and HESS J1641$-$463 respectively.
The Galactic TeV $gamma$-ray source HESS$,$J1804$-$216 is currently an unidentified source. In an attempt to unveil its origin, we present here the most detailed study of interstellar gas using data from the Mopra Southern Galactic Plane CO Survey, 7 and 12$,$mm wavelength Mopra surveys and Southern Galactic Plane Survey of HI. Several components of atomic and molecular gas are found to overlap HESS$,$J1804$-$216 at various velocities along the line of sight. The CS(1-0) emission clumps confirm the presence of dense gas. Both correlation and anti-correlation between the gas and TeV $gamma$-ray emission have been identified in various gas tracers, enabling several origin scenarios for the TeV $gamma$-ray emission from HESS$,$J1804$-$216. For a hadronic scenario, SNR$,$G8.7$-$0.1 and the progenitor SNR of PSR$,$J1803$-$2137 require cosmic ray (CR) enhancement factors of $mathord{sim} 50$ times the solar neighbour CR flux value to produce the TeV $gamma$-ray emission. Assuming an isotropic diffusion model, CRs from both these SNRs require a slow diffusion coefficient, as found for other TeV SNRs associated with adjacent ISM gas. The morphology of gas located at 3.8$,$kpc (the dispersion measure distance to PSR$,$J1803$-$2137) tends to anti-correlate with features of the TeV emission from HESS$,$J1804$-$216, making the leptonic scenario possible. Both pure hadronic and pure leptonic scenarios thus remain plausible.
167 - I. Oya , M. Dalton , B. Behera 2013
A new TeV source, HESS J1641-463, has been serendipitously discovered in the Galactic plane by the High Energy Stereoscopic System (H.E.S.S.) at a significance level of 8.6 standard deviations. The observations of HESS J1641-463 were performed betwee n 2004 and 2011 and the source has a moderate flux level of 1.7% of the Crab Nebula flux at E > 1 TeV. HESS J1641-463 has a rather hard photon index of 1.99 +- 0.13_stat +- 0.20_sys. HESS J1641-463 is positionally coincident with the radio supernova remnant SNR G338.5+0.1, but no clear X-ray counterpart has been found in archival Chandra observations of the region. Different possible VHE production scenarios will be discussed in this contribution.
The nature of the gamma-ray source HESS J1507-622 that is located significantly off-set from the Galactic plane is not ascertained to date. Identifying the environment of an enigmatic object may help to constrain its nature. The path of the line of s ight of HESS J1507-622 through the Galaxy is compared to the characteristic length scales of stellar populations of different ages. Furthermore, for this object, the energy density in particles is contrasted to the magnetic field energy density and constraints on the distance based on equipartition between these two components are calculated. The line of sight of HESS J1507-622 reaches a minimum distance to the Galactic center at around a galactocentric distance of 5.3 kpc at about 300 pc off the Galactic disc. This location coincides with the scale length and width of stars with an age of 1.2 Gyr which could in principle be an indication that HESS J1507-622 is connected to a stellar population of similar age. For such a case the source appears to be strongly particle dominated. In a leptonic scenario, if a magnetic field in the source of 1 $mu$G is assumed, equipartition between magnetic field and particles would be realized at a distance of >1 Mpc. This could indicate an extragalactic origin of this object. However, an extragalactic origin is challenged by the extension of the source. The environment of HESS J1507-622 still remains elusive. For the case where this source belongs to a new class of gamma-ray emitters, the distribution of related objects (if existing) may help to settle the respective environment and distance scale.
We have analyzed three XMM-Newton observations of the central part of the unidentified TeV gamma-ray source HESS J1804-216. We focus on two X-ray sources 2XMMi J180442.0-214221 (Src 1) and 2XMMi J180432.5-214009 (Src 2), which were suggested to be th e possible X-ray counterparts to the TeV source. We discover a 2.93 hr X-ray periodicity from Src 1, with the pulse profile explained with a self-eclipsing pole in an eclipsing polar. Src 2 exhibits a strong Fe emission line (FWHM ~0.3 keV and equivalent width ~0.8 keV) and large X-ray variability on timescales of hours and is probably an intermediate polar. Thus Src 1 and Src 2 are probably two field sources not responsible for the TeV emission. The observations were contaminated by strong straylight from a nearby bright source, and we see no clear extended X-ray emission that can be attributed to the supernova remnant G8.7-0.1, a popular possible association with the TeV source. The other possible association, the pulsar wind nebula candidate PSR J1803-2137, shows little long-term variability, compared with a previous Chandra observation. Many point sources were serendipitously detected, but most of them are probably normal stars. Three new candidate compact object systems (other than Src 1, Src 2 and PSR J1803-2137) are also found. They are far away from the TeV source and are probably also magnetic cataclysmic variables, thus unlikely to be responsible for the TeV emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا