ترغب بنشر مسار تعليمي؟ اضغط هنا

An Empirical Correction for Moderate Multiple Scattering in Super-Heterodyne Light Scattering

66   0   0.0 ( 0 )
 نشر من قبل Denis Botin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T>0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

قيم البحث

اقرأ أيضاً

375 - Thomas Palberg 2008
In soft matter structure couples to flow and vice versa. Complementary to structural investigations, we here are interested in the determination of particle velocities of charged colloidal suspensions of different structure under flow. In a combined effort of theory and experiment we determine the Fourier transform of the super-heterodyne field auto-correlation function (power spectrum) which in frequency space is found to be well separated from homodyne contributions and low frequency noise. Under certain conditions the power spectrum is dominated by incoherently scattered light, originating from the unavoidable size polydispersity of colloidal particles. A simple approximate form for the low-wavenumber self-intermediate scattering function is proposed, reminiscent to the case of non-interacting particles. We experimentally scrutinize the range of applicability of these simplified calculations on employing a parabolic electro-osmotic flow profile. Both for non-interacting and strongly interacting fluid particle systems, the spectra are well described as diffusion-broadened velocity distributions comprising an osmotic flow-averaged superposition of Lorentzians at distinct locations. We discuss the performance and scope of this approach with particular focus on moderately strong interactions and on multiphase flow. In addition, we point to some remaining theoretical challenges in connection to the observed linear increase of the effective diffusion constant and the integrated spectral power with increasing electric field strength.
We demonstrate a prototype light scattering instrument combining a frequency domain approach to the intermediate scattering function from Super-Heterodyning Doppler Velocimetry with the versatility of a standard homodyne Dynamic Light Scattering goni ometer setup for investigations over a large range of scattering vectors. Comparing to reference experiments in correlation-time domain, we show that the novel approach can determine diffusion constants and hence hydrodynamic radii with high precision and accuracy. Possible future applications are discussed shortly.
162 - R.N. Lee , A.I. Milstein 2008
The quasiclassical correction to the Molieres formula for multiple scattering is derived. The consideration is based on the scattering amplitude, obtained with the first quasiclassical correction taken into account for arbitrary localized but not sph erically symmetric potential. Unlike the leading term, the correction to the Molieres formula contains the target density $n$ and thickness $L$ not only in the combination $nL$ (areal density). Therefore, this correction can be reffered to as the bulk density correction. It turns out that the bulk density correction is small even for high density. This result explains the wide region of applicability of the Molieres formula.
We study the light scattering by localized quasi planar excitations of a Cholesteric Liquid Crystal known as spherulites. Due to the anisotropic optical properties of the medium and the peculiar shape of the excitations, we quantitatively evaluate th e cross section of the axis-rotation of polarized light. Because of the complexity of the system under consideration, first we give a simplified, but analytical, description of the spherulite and we compare the Born approximation results in this setting with those obtained by resorting to a numerical exact solution. The effects of changing values of the driving external static electric (or magnetic) field is considered. Possible applications of the phenomenon are envisaged.
Our everyday experience teaches us that the structure of a medium strongly influences how light propagates through it. A disordered medium, e.g., appears transparent or opaque, depending on whether its structure features a mean free path that is larg er or smaller than the medium thickness. While the microstructure of the medium uniquely determines the shape of all penetrating light paths, recent theoretical insights indicate that the mean length of these paths is entirely independent of any structural medium property and thus also invariant with respect to a change in the mean free path. Here, we report an experiment that demonstrates this surprising property explicitly. Using colloidal solutions with varying concentration and particle size, we establish an invariance of the mean path length spanning nearly two orders of magnitude in scattering strength, from almost transparent to very opaque media. This very general, fundamental and counterintuitive result can be extended to a wide range of systems, however ordered, correlated or disordered, and has important consequences for many fields, including light trapping and harvesting for solar cells and more generally in photonic structure design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا