ﻻ يوجد ملخص باللغة العربية
We present asymptotic giant branch (AGB) models of solar metallicity, to allow the interpretation of observations of Galactic AGB stars, whose distances should be soon available after the first release of the Gaia catalogue. We find an abrupt change in the AGB physical and chemical properties, occurring at the threshold mass to ignite hot bottom burning,i.e. $3.5M_{odot}$. Stars with mass below $3.5 M_{odot}$ reach the C-star stage and eject into the interstellar medium gas enriched in carbon , nitrogen and $^{17}O$. The higher mass counterparts evolve at large luminosities, between $3times 10^4 L_{odot}$ and $10^5 L_{odot}$. The mass expelled from the massive AGB stars shows the imprinting of proton-capture nucleosynthesis, with considerable production of nitrogen and sodium and destruction of $^{12}C$ and $^{18}O$. The comparison with the most recent results from other research groups are discussed, to evaluate the robustness of the present findings. Finally, we compare the models with recent observations of galactic AGB stars, outlining the possibility offered by Gaia to shed new light on the evolution properties of this class of objects.
In this chapter the focus is on the properties of post-Asymptotic Giant Branch (post-AGB) stars in binary systems. Their Spectral Energy Distributions (SEDs) are very characteristic: they show a near-infrared excess, indicative of the presence of war
Obscured by their circumstellar dusty envelopes post-AGB stars emit a large fraction of their energy in the infrared and thus, infrared sky surveys like IRAS were essential for discoveries of post-AGBs in the past. Now, with the AKARI infrared sky su
We investigate the star formation history and metallicity of the Local Group irregular dwarf galaxy WLM using wide-field JHK near-infrared imaging, spanning a region of approximately 1 sq. degree, obtained with WFCAM on UKIRT. JHK photometry clearly
Calculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce t
It is well known that thermally pulsing Asymptotic Giant Branch stars with low mass play a relevant role in the chemical evolution. They have synthesized about 30% of the galactic carbon and provide an important contribution to the nucleosynthesis of