ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying the evolution of AGB stars in the Gaia epoch

105   0   0.0 ( 0 )
 نشر من قبل Marcella Di Criscienzo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present asymptotic giant branch (AGB) models of solar metallicity, to allow the interpretation of observations of Galactic AGB stars, whose distances should be soon available after the first release of the Gaia catalogue. We find an abrupt change in the AGB physical and chemical properties, occurring at the threshold mass to ignite hot bottom burning,i.e. $3.5M_{odot}$. Stars with mass below $3.5 M_{odot}$ reach the C-star stage and eject into the interstellar medium gas enriched in carbon , nitrogen and $^{17}O$. The higher mass counterparts evolve at large luminosities, between $3times 10^4 L_{odot}$ and $10^5 L_{odot}$. The mass expelled from the massive AGB stars shows the imprinting of proton-capture nucleosynthesis, with considerable production of nitrogen and sodium and destruction of $^{12}C$ and $^{18}O$. The comparison with the most recent results from other research groups are discussed, to evaluate the robustness of the present findings. Finally, we compare the models with recent observations of galactic AGB stars, outlining the possibility offered by Gaia to shed new light on the evolution properties of this class of objects.



قيم البحث

اقرأ أيضاً

132 - Hans Van Winckel 2018
In this chapter the focus is on the properties of post-Asymptotic Giant Branch (post-AGB) stars in binary systems. Their Spectral Energy Distributions (SEDs) are very characteristic: they show a near-infrared excess, indicative of the presence of war m dust, while the central stars are too hot to be in a dust-production evolutionary phase. This allows for an efficient detection of binary post-AGB candidates. It is now well established that the near-infrared excess is produced by the inner rim of a stable dusty disc that surrounds the binary system. These discs are scaled-
Obscured by their circumstellar dusty envelopes post-AGB stars emit a large fraction of their energy in the infrared and thus, infrared sky surveys like IRAS were essential for discoveries of post-AGBs in the past. Now, with the AKARI infrared sky su rvey we can extend our knowledge about the late stages of stellar evolution. The long-term goal of our work is to define new photometric criteria to distinguish new post-AGB candidates from the AKARI data.
We investigate the star formation history and metallicity of the Local Group irregular dwarf galaxy WLM using wide-field JHK near-infrared imaging, spanning a region of approximately 1 sq. degree, obtained with WFCAM on UKIRT. JHK photometry clearly reveals the tip of the red giant branch, allowing a new estimate of the distance, and allows ready identification of C-type and M-type AGB stars. The C/M ratio was used to produce a surface map of the metallicity distribution which is compared to previous studies. Multi-wavelength spectral energy distributions (SEDs) were constructed for some AGB stars.
Calculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce t he accuracy of these predictions. One such uncertainty involves the treatment of low-temperature molecular opacities that account for the surface abundance variations of C, N, and O. A number of prior calculations of intermediate-mass AGB stellar models that incorporate both efficient third dredge-up and hot bottom burning include a molecular opacity treatment which does not consider the depletion of C and O due to hot bottom burning. Here we update the molecular opacity treatment and investigate the effect of this improvement on calculations of intermediate-mass AGB stellar models. We perform tests on two masses, 5 M$_{odot}$ and 6 M$_{odot}$, and two metallicities, $Z~=~0.001$ and $Z~=~0.02$, to quantify the variations between two opacity treatments. We find that several evolutionary properties (e.g. radius, $T_{rm eff}$ and $T_{rm bce}$) are dependent on the opacity treatment. Larger structural differences occur for the $Z~=~0.001$ models compared to the $Z~=~0.02$ models indicating that the opacity treatment has a more significant effect at lower metallicity. As a consequence of the structural changes, the predictions of isotopic yields are slightly affected with most isotopes experiencing changes up to 60 per cent for the $Z~=~0.001$ models and 20 per cent for the $Z~=~0.02$ models. Despite this moderate effect, we conclude that it is more fitting to use variable molecular opacities for models undergoing hot bottom burning.
It is well known that thermally pulsing Asymptotic Giant Branch stars with low mass play a relevant role in the chemical evolution. They have synthesized about 30% of the galactic carbon and provide an important contribution to the nucleosynthesis of heavy elements (A>80). The relevant nucleosynthesis site is the He-rich intermediate zone (less than 10^{-2} Msun), where alpha(2alpha,gamma)12C reactions and slow neutron captures on seed nuclei essentially iron) take place. A key ingredient is the interplay between nuclear processes and convective mixing. It is the partial overlap of internal and external convective zones that allows the dredge-up of the material enriched in C and heavy elements. We review the progresses made in the last 50 years in the comprehension of the s process in AGB stars, with special attention to the identification of the main neutron sources and to the particular physical conditions allowing this important nucleosynthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا