ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital-dependent charge dynamics in MnP revealed by optical study

122   0   0.0 ( 0 )
 نشر من قبل Yi-feng Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unconventional superconductivity often emerges at the border of long-range magnetic orders. Understanding the low-energy charge dynamics may provide crucial information on the formation of superconductivity. Here we report the unpolarized/polarized optical conductivity study of high quality MnP single crystals at ambient pressure. Our data reveal two types of charge carriers with very different lifetimes. In combination with the first-principles calculations, we show that the short-lifetime carriers have flat Fermi sheets which become gapped in the helimagnetic phase, causing a dramatic change in the low-frequency optical spectra, while the long-lifetime carriers are anisotropic three-dimensional like which are little affected by the magnetic transitions and provide major contributions to the transport properties. This orbital-dependent charge dynamics originates from the special crystal structure of MnP and may have an influence on the unconventional superconductivity and its interplay with helimagnetism at high pressures.



قيم البحث

اقرأ أيضاً

156 - A. F. Fang , X. B. Wang , P. Zheng 2014
Sr3Ir4Sn13 is an interesting compound showing a coexistence of structural phase transition and superconductivity. The structural phase transition at 147 K leads to the formation of a superlattice. We performed optical spectroscopy measurements across the structural phase transition on single crystal sample of Sr3Ir4Sn13. The optical spectroscopy study reveals an unusual temperature induced spectral weight transfer over broad energy scale, yielding evidence for the presence of electron correlation effect. Below the structural phase transition temperature an energy gap-like suppression in optical conductivity was observed, leading to the removal of partial itinerant carriers near Fermi level. Unexpectedly, the suppression appears at much higher energy scale than that expected for a usual charge density wave phase transition.
We report on a detailed study of the optical properties of CsV$_{3}$Sb$_{5}$ at a large number of temperatures above and below the charge-density-wave (CDW) transition. Above the CDW transition, the low-frequency optical conductivity reveals two Drud e components with distinct widths. An examination of the band structure allows us to ascribe the narrow Drude to multiple light and Dirac bands, and the broad Drude to the heavy bands near the $M$ points which form saddle points near the Fermi level. Upon entering the CDW state, the opening of the CDW gap is clearly observed. A large portion of the broad Drude is removed by the gap, whereas the narrow Drude is not affected. Meanwhile, an absorption peak associated with interband transitions near the saddle points shifts to higher energy and grows in weight. These observations are consistent with the scenario that the CDW in CsV$_{3}$Sb$_{5}$ is driven by nesting of Fermi surfaces near the saddle points at $M$.
The improved resolution of laser-based angle-resolved photoemission spectroscopy (ARPES) allows reliable access to fine structures in the spectrum. We present a systematic, doping-dependent study of a recently discovered low-energy kink in the nodal dispersion of Bi2Sr2CaCu2O8+d (Bi-2212), which demonstrates the ubiquity and robustness of this kink in underdoped Bi-2212. The renormalization of the nodal velocity due to this kink becomes stronger with underdoping, revealing that the nodal Fermi velocity is non-universal, in contrast to assumed phenomenology. This is used together with laser-ARPES measurements of the gap velocity, v2, to resolve discrepancies with thermal conductivity measurements.
We report a detailed $mu$SR study of the pressure evolution of the magnetic order in the manganese based pnictide MnP, which has been recently found to undergo a superconducting transition under pressure once the magnetic ground state is suppressed. Using the muon as a volume sensitive local magnetic probe, we identify a ferromagnetic state as well as two incommensurate helical states (with propagation vectors ${bf Q}$ aligned along the crystallographic $c-$ and $b-$directions, respectively) which transform into each other through first order phase transitions as a function of pressure and temperature. Our data appear to support that the magnetic state from which superconductivity develops at higher pressures is an incommensurate helical phase.
A number of experiments have evidenced signatures of enhanced superconducting correlations after photoexcitation. Initially, these experiments were interpreted as resulting from quasi-static changes in the Hamiltonian parameters, for example, due to lattice deformations or melting of competing phases. Yet, several recent observations indicate that these conjectures are either incorrect or do not capture all the observed phenomena, which include reflectivity exceeding unity, large shifts of Josephson plasmon edges, and appearance of new peaks in terahertz reflectivity. These observations can be explained from the perspective of a Floquet theory involving a periodic drive of system parameters, but the origin of the underlying oscillations remains unclear. In this paper, we demonstrate that following incoherent photoexcitation, long-lived oscillations are generally expected in superconductors with low-energy Josephson plasmons, such as in cuprates or fullerene superconductor K$_3$C$_{60}$. These oscillations arise from the parametric generation of plasmon pairs due to pump-induced perturbation of the superconducting order parameter. We show that this bi-plasmon response can persist even above the transition temperature as long as strong superconducting fluctuations are present. Our analysis offers a robust framework to understand light-induced superconducting behavior, and the predicted bi-plasmon oscillations can be directly detected using available experimental techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا